<table>
<thead>
<tr>
<th>From:</th>
<th>David Kwong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sent:</td>
<td>Thursday, August 15, 2019 10:34 AM</td>
</tr>
<tr>
<td>To:</td>
<td>Jobi Adams</td>
</tr>
<tr>
<td>Cc:</td>
<td>Stephanie Ocasio</td>
</tr>
<tr>
<td>Subject:</td>
<td>2 meetings</td>
</tr>
</tbody>
</table>

Jobi, can you set up 2 meetings for me. First is a one on one between me and Makinde (check-in and expectations) and the second one is me, Mike, Kevin C., and Rick Edwards and Dave Rudat. The meeting with the fire departments is regarding the mobile home park on Telestar. The mobile home park is more of a priority and please schedule it Wednesday or later. The one with Makinde can be the following week or later. Thanks, David
Please let me know if this makes more sense. Thank you, David

-----Original Message-----
From: David Kwong
Sent: Wednesday, August 14, 2019 1:49 PM
To: Kimberly Trammel <Kimberly.Trammel@stocktonca.gov>; Stephanie Ocasio <Stephanie.Ocasio@stocktonca.gov>
Cc: Nicole Mamorno <Nicole.Mamorno@stocktonca.gov>
Subject: RE: Approval Tracking - RESPONSE FROM CITY STAFF TO THE MAYOR’S TASK FORCE ON AFFORDABLE AND WORKFORCE HOUSING RECOMMENDATIONS

-----Original Message-----
From: Kimberly Trammel <Kimberly.Trammel@stocktonca.gov>
Sent: Wednesday, August 14, 2019 1:19 PM
To: Stephanie Ocasio <Stephanie.Ocasio@stocktonca.gov>; David Kwong <David.Kwong@stocktonca.gov>
Cc: Nicole Mamorno <Nicole.Mamorno@stocktonca.gov>
Subject: FW: Approval Tracking - RESPONSE FROM CITY STAFF TO THE MAYOR’S TASK FORCE ON AFFORDABLE AND WORKFORCE HOUSING RECOMMENDATIONS

I’m reading through the recommendations and staff responses and found a sentence that no longer makes sense with multiple edits. Can you help me figure out how to fix it? It is on page 13 of Attachment A - "A mobile home park land use and is subject to an Administrative Use Permit." Below is the rest of the paragraph.

Recommendation No. 19: Work with factory-built manufactured home and modular housing companies to educate local regulatory bodies unfamiliar with these housing types.

Response:
Staff requests additional information to address the recommendation. Development Code already allows by-right (no conditional use permit) single-family housing, including modular or manufactured home types in residential zoning districts.

Please replace this paragraph--
A mobile home park land use and is subject to an Administrative Use Permit.
Staff intends on making changes through the development code update to remove the administrative use permit process for mobile home parks to streamline the process. Additional education on modular construction can be provide to the public, stakeholders, and manufactured home builders through the California Department of Housing and Community Development website below.
With this one--
A mobile home park is classified in the city's development code as a land use which requires an Administrative Use Permit. Staff intends on making changes through the development update process to remove the administrative use permit requirement to streamline the approval process. In addition to mobile homes parks, other modular or factory built housing types are also allowed today. This type of housing information can be provided through the main regulatory approval agency, namely, the California Department of Housing and Community Development. The link to this information is provided below.

If I finish the staff report before I hear back, I will send it on to City Attorney to keep it moving.

Thanks,
Kim

-----Original Message-----
From: Albert.Rivas@stocktonca.gov <Albert.Rivas@stocktonca.gov>
Sent: Wednesday, August 14, 2019 11:49 AM
To: Kimberly Trammel <Kimberly.Trammel@stocktonca.gov>
Subject: Approval Tracking – Delegation

CAUTION: This email originated from outside the City of Stockton. Do not click any links or open attachments if this is unsolicited email.

Kimberly Trammel

File 19-5779 has been delegated to you by Kimberly Trammel for input or approval.
Kevin, can you or your staff provide me a status on the AUP for this project. Thanks, David
Mike and Kevin. No GPA is required and only CEQA exemption is needed for the processing of the AUP. We have conveyed this to Steve Herum, the applicant’s attorney. Please ask staff to communicate with both the applicant and his attorney in emails during the processing of this application. Please let me know if you have questions. Thanks, David

From: Lori Asuncion <Lori.Asuncion@stocktonca.gov>
Sent: Tuesday, April 16, 2019 1:27 PM
To: Scott Carney <Scott.Carney@stocktonca.gov>; David Kwong <David.Kwong@stocktonca.gov>
Cc: John Luebberke <John.Luebberke@stocktonca.gov>
Subject: RE: GENERAL PLAN AMENDMENT FOR MOBILE HOME PARK

Scott,

David and I just got off the phone with Steve Herum. We conveyed our revised position as detailed below. Steve was happy with the outcome and will advise his client accordingly. David K. & Co. will let the applicant/Herum know if anything additional is required re: the application itself.

Lori

From: Scott Carney <Scott.Carney@stocktonca.gov>
Sent: Tuesday, April 16, 2019 1:17 PM
To: David Kwong <David.Kwong@stocktonca.gov>; Lori Asuncion <Lori.Asuncion@stocktonca.gov>
Subject: Fw: GENERAL PLAN AMENDMENT FOR MOBILE HOME PARK

FYI

From: Scott Carney
Sent: Tuesday, April 16, 2019 1:15 PM
To: Kurt Wilson
Cc: John Luebberke
Subject: Fw: GENERAL PLAN AMENDMENT FOR MOBILE HOME PARK

Director Kwong and Asst CAO Asuncion talked with Herum yesterday. Based on the discussion, there is a better understanding of the interconnections with state process to review mobile home parks. As a consequence, the CDD is able to process the Administrative Use Permit application without consideration of density, which will be part of state review, and the CEQA requirements will be met with an applicable exemption.
This project application is being processed without extraordinary effort of less workload than anticipated. Should be on track and will provide update if there are later issues.

S

From: Scott Carney
Sent: Thursday, April 11, 2019 6:10 PM
To: Kurt Wilson
Cc: John Luebberke; David Kwong
Subject: Fwd: GENERAL PLAN AMENDMENT FOR MOBILE HOME PARK

CDD staff determined that the General Plan amendment and CEQA requirements for a proposed mobile home park would be significant. If initiated by COS these efforts would detract from other priorities. The CDD Director and Asst CAO will discuss with applicant’s attorney next week. Applicant would be required to submit application, complete necessary CEQA and pay fees (approx $4000). The Mayor made inquiry about project, and inquired about City initiating the General Plan amendment. This is an option, but detracts from existing workload and normal process is applicant driven.

Please let us know if there are additional questions.

S

Begin forwarded message:

From: Scott Carney <Scott.Carney@stocktonca.gov>
Date: April 11, 2019 at 17:59:54 PDT
To: David Kwong <David.Kwong@stocktonca.gov>
Cc: Lori Asuncion <Lori.Asuncion@stocktonca.gov>
Subject: Re: GENERAL PLAN AMENDMENT FOR MOBILE HOME PARK

Consistent with prior direction, staff would only initiate if minimal impact to existing workload. I’ll communicate with the City Manager, and please discuss with the applicant next week to see if there is different perspective on CEQA.

S

On Apr 11, 2019, at 17:10, David Kwong <David.Kwong@stocktonca.gov> wrote:

Scott,
Steve Herum represents an applicant proposing a 350 space mobile home park in northeast Stockton on about 20 acres. The site is currently designated in the general plan as Low Density Residential which allows up to 8.7 dwelling unit to the acre. The corresponding zoning designation is Medium Density which allows up to 17.4 dwelling units to the acre. The proposal will need a general plan amendment from low density residential to medium density residential and the associated CEQA analysis. Staff will evaluate the general plan amendment regardless of whether it is initiated by the City or the developer.

However, the CEQA analysis will require the use of a consultant and management of the scope and work. Additionally, if more detailed analysis is
triggered, this will require even more staff time and oversight. For example, if additional components of CEQA work such as a traffic analysis are needed, then the scope of the contract and CEQA work that needs to be managed becomes more extensive as well.

I recommend that the applicant initiate the application and that staff follow its normal process with regard to the general plan amendment and associated CEQA work. In speaking with my staff, we are at capacity and any additional city initiative (even positive ones such as this one) to our planned program will have a significant impact on our ability to provide an appropriate level of customer service to all of our internal and external customers, planning commission, and city council. I will, of course, adjust priorities given your direction. I appreciate your consideration and appreciate your thoughts.

Thanks, David
Steve, attached is the public draft IS-ND that was prepared for the previous project on the site of the proposed Mobile Home Park project. Thanks, David
MONTAGE CONDOMINIUMS
GENERAL PLAN AMENDMENT, REZONING,
TENTATIVE MAP AND PLANNED DEVELOPMENT PERMIT

General Plan Amendment GPA 2-06
Rezoning Z 2-06
Initial Study IS 10-06
Tentative Map TM 9-06
Planned Development PD 3-06

September 7, 2006

Prepared for:
City of Stockton
Community Development Department/
Planning Division
345 North El Dorado Street
Stockton, CA 95202
PUBLIC REVIEW
INITIAL STUDY/
MITIGATED NEGATIVE DECLARATION

MONTAGE CONDOMINIUMS
GENERAL PLAN AMENDMENT, REZONING,
TENTATIVE MAP AND PLANNED DEVELOPMENT PERMIT

General Plan Amendment GPA 2-06
Rezoning Z 2-06
Initial Study IS 10-06
Tentative Map TM 9-06
Planned Development PD 3-06

September 7, 2006

Prepared for:
City of Stockton
Community Development Department/
Planning Division
345 North El Dorado Street
Stockton, CA 95202

Prepared by:
INSITE ENVIRONMENTAL, INC.
6653 Embarcadero Drive, Suite Q
Stockton, CA 95219
TABLE OF CONTENTS

INTRODUCTION

SUMMARY TABLE

INITIAL STUDY

A. GENERAL INFORMATION/PROJECT DESCRIPTION

B. PROJECT SITE CHARACTERISTICS

C. ENVIRONMENTAL SIGNIFICANCE CHECKLIST

1. Aesthetics
2. Agricultural Resources
3. Air Quality
4. Biological Resources
5. Cultural Resources
6. Geology and Soils
7. Hazards and Hazardous Materials
8. Hydrology and Water Quality
9. Land Use and Planning
10. Mineral Resources
11. Noise
12. Population and Housing
13. Public Services
14. Recreation
15. Transportation/Traffic
16. Utilities and Service Systems
17. Other Issues
18. Mandatory Findings of Significance

D. ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

E. REFERENCES CITED AND PERSONS CONSULTED

F. DETERMINATION

LIST OF FIGURES

1. Regional Map
2. Vicinity Map
3. USGS Map
4. Aerial Photo
5. Assessor Parcel Map
6. Site Plan
7. Street Sections
8. Planned Development Map
APPENDICES

Appendix A: Mitigation Agreement
Appendix B - URBEMIS Report
Appendix C - Biology Study
Appendix D - Cultural Resources Study
Appendix E - Hazards Study
Appendix F - Noise Study
Appendix G - Traffic Study
INTRODUCTION

The following pages contain Table 1, Summary of Impacts and Mitigation Measures for the Montage Condominiums project. The table is drawn from the Initial Study/Mitigated Negative Declaration that follows the Table.

The Montage Condominiums project involves the development of 19.1 acres in the City of Stockton for medium-density condominium residential use. The project area is located adjacent to the west side of Holman Road east of the Union Pacific Railroad (UP/SP), south of Hammer Lane and north of Saxon Drive. The proposed project would include 37 buildings that would house a total of 222 two-bedroom two-bath condominiums. The buildings will each house six-condominium units. The proposed project would include a pool area, toddler lot, basketball court and barbeque area for future residential use. Open space and recreational areas would total 6.80 acres, 37.7 percent of the total project site.

The potential environmental impacts of the proposed project are summarized in the leftmost column of this table. The level of significance of the impact is indicated in the second column, mitigation measures proposed to minimize the impacts are shown in the third column, and the significance of the impact, after mitigation measures are applied, is shown in the fourth column.
SUMMARY OF ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Significance Before Mitigation Measures</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AESTHETICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts on Aesthetic Resources, Off-Site Aesthetic Conditions, Light and Clare</td>
<td>PS</td>
<td>1. The owners, developers and successors-in-interest (ODS) shall be responsible for the installation and maintenance of an 8-foot high masonry wall along the north and east boundary of the site. The solid wall shall be installed prior to the issuance of any residential building for the lots adjacent to the above-noted boundaries of the subdivision.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The solid wall within the condominium project shall be subject to Architectural Design Review prior to submittal of a building permit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. The ODS shall be responsible for design, installation and maintenance of the landscaping and automatic irrigation system adjacent to the walls along the north, west and southwest boundaries of the project site.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. The ODS shall be responsible for the installation of extensive landscaping with a minimum of 15 gallon trees within the project site.</td>
<td></td>
</tr>
<tr>
<td>2. AGRICULTURE</td>
<td></td>
<td>None required</td>
<td></td>
</tr>
<tr>
<td>Impacts on Conversion of Agricultural Land</td>
<td>LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. AIR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts on Construction</td>
<td>PS</td>
<td>1. During construction, the District will comply with required control measures specified in San Joaquin Valley Air Pollution Control District Regulation VIII (Fugitive Dust Rules), including compliance with the following mitigation measure 2 through 10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Visible Dust Emissions (VDE) from construction, demolition, excavation or other earthmoving activities related to the project shall be limited to 20% opacity or less, as defined in Rule 8011, Appendix A. The dust control measures specified in mitigations 3 through 10 shall be applied as required to maintain the VDE standard.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Pre-water all land clearing, grubbing, scraping, excavation, land leveling, grading, cut and fill, and demolition activity sites and phase earthmoving.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Apply water, chemical/organic stabilizer/ suppressant, or vegetative ground cover to all disturbed areas, including unpaved roads.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Restrict vehicular access to the disturbance area during periods of inactivity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Apply water or chemical/organic stabilizers/ suppressants, construct wind barriers and/or cover exposed potentially dust-generating materials.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. When materials are transported off-site, stabilize and cover all materials to be transported and maintain six inches of freeboard space from the top of the container.</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Mitigation Measures</th>
<th>Significance Before Mitigation</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8. Remove carryout and trackout of soil materials on a daily basis unless it extends more than 50 feet from site; carryout and trackout extending more than 50 feet from the site shall be removed immediately. The use of dry rotary brushes is expressly prohibited except where preceded or accompanied by sufficient wetting to limit the visible dust emissions. Use of blower devices is expressly forbidden. If the project would involve more than 150 construction vehicle trips per day onto the public street, additional restrictions specified in Section 5.8 of Rule 8041 will apply.</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td></td>
<td>9. Traffic speeds on unpaved roads shall be limited to 15 mph.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. The project is subject to compliance with the Indirect Source Rule 9510 of the San Joaquin Valley Air Pollution Control District.</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>BIOLOGICAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts on Biological Resources</td>
<td>1. The owners, developers, and/or successors-in-interest shall mitigate for the proportionate loss of potential wildlife habitat from the project site by taking any actions required by the adopted San Joaquin County Multi-Species Habitat Conservation and Open Space Plan.</td>
<td>PS</td>
<td>LS</td>
</tr>
<tr>
<td>CULTURAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts on Cultural Resources</td>
<td>1. If any subsurface cultural resources are encountered during construction of the residential project, all construction activities in the vicinity of the encounter shall be halted until a qualified archaeologist can examine these materials and make a determination of their significance. The City of Stockton Community Development Department shall be notified, and the owners, developers and/or successors-in-interest shall be responsible for mitigation of any significant cultural resources pursuant to the CEQA Guidelines.</td>
<td>PS</td>
<td>LS</td>
</tr>
<tr>
<td></td>
<td>2. If human remains are encountered at any time during the development of the project, all work in the vicinity of the find shall halt and the County Coroner and the Community Development Department shall be notified immediately. The Coroner must contact the Native American Heritage Commission if the remains have been identified as being of Native American descent. At the same time, a qualified archaeologist must be contracted to evaluate the archaeological implications of the finds. The CEQA Guidelines detail steps to be taken when human remains are found to be of Native American origin.</td>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>GEOLOGY AND SOILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological and Soils Impacts</td>
<td>1. The owners, developers, and successors shall have a licensed geotechnical or soils engineer prepare a soil report for the project site. The report shall identify engineering limitations of the soils and recommend measures to ensure that improvements will not be damaged by these limitations.</td>
<td>PS</td>
<td>LS</td>
</tr>
<tr>
<td></td>
<td>2. The project geotechnical report shall be submitted to the Building Division for review and approval prior to the issuance of any building permit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. The owners, developers, and successors shall be responsible for implementation of all applicable recommendations contained in the geotechnical report.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Significance Before Mitigation Measures</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. HAZARDS AND HAZARDOUS MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazard Impacts</td>
<td>PS</td>
<td>1. If any subsurface structures are encountered during site development or excavation on site care should be exercised in determining whether or not the subsurface structures contain asbestos. If identified as asbestos-containing material, these items shall be disposed of in accordance with local, state and federal laws and regulations.</td>
<td>LS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The owners, developers and/or successors shall remove any existing on-site debris piping, septic systems and wells.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. The ODS will abandon all septic systems, piping and wells in accordance with local regulations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. The owners, developers and/or successors shall inspect the ground surface during the debris removal process for any soil staining or other evidence of contamination. Contaminated soil shall be removed and disposed in accordance with applicable local state, and federal regulations.</td>
<td></td>
</tr>
<tr>
<td>8. HYDROLOGY AND WATER QUALITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts on Hydrology & Water Quality</td>
<td>PS</td>
<td>1. The owners, developers and/or successors-in-interest shall demonstrate compliance with City Code Sections 7-859, 7-859.1 and 7-859.2 to the Municipal Utilities Department to insure that sufficient post-construction storm water pollution prevention practices have been incorporated into the project design.</td>
<td>LS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The owners, developers and/or successors-in-interest shall submit a Storm Water Pollution Prevention Plan to the Municipal Utilities Department that includes both construction stage and permanent storm water pollution prevention practices. This Plan must be developed during the project design phase and submitted and approved prior to the start of construction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. As of November 25, 2003, project improvement plans must comply with the Stormwater Quality Control Criteria Plan, as outlined in the city’s Phase 1 Stormwater NPDES Permit issued by the California Water Quality Control Board, Central Valley Region (Order No R5-2002-0181).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. The owners, developers and/or successors-in-interest must establish a maintenance entity acceptable to the City to provide funding for the operation, maintenance and replacement costs of the storm water best management practices.</td>
<td></td>
</tr>
<tr>
<td>9. LAND USE AND PLANNING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use and Conflicts</td>
<td>PS</td>
<td>As described in Sections 4.1 and 4.11</td>
<td></td>
</tr>
<tr>
<td>10. MINERAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact on Mineral Resources</td>
<td>LS</td>
<td>None required</td>
<td></td>
</tr>
<tr>
<td>11. NOISE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Significance Before Mitigation Measures</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Impacts</td>
<td>PS</td>
<td>1. Temporary noise impacts resulting from project construction shall be minimized by restricting hours of operation by noise-generating equipment to 7:00 a.m. to 10:00 p.m., Monday through Friday, and 7:00 a.m. to 5:00 p.m. on Saturday and Sunday when such equipment is to be used near noise-sensitive land uses, and by requiring residential type mufflers where applicable.</td>
<td>LS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The owners, developers, and/or successors-in-interest shall be responsible for the installation and maintenance of a 6-foot high masonry wall along the north and east boundary of the site. The solid masonry wall shall be installed prior to the issuance of any residential building for the lots adjacent to the above-noted boundaries of the subdivision.</td>
<td></td>
</tr>
</tbody>
</table>

12. POPULATION AND HOUSING

Impacts on Population and Housing

<table>
<thead>
<tr>
<th>Significance</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>None required</td>
<td></td>
</tr>
</tbody>
</table>

13. PUBLIC SERVICES/FACILITIES

Impacts on Public Services and Facilities

<table>
<thead>
<tr>
<th>Significance</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>1. The ODS shall pay required Public Facility Fees toward construction of new fire stations and related facilities prior to issuance of construction permits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. The ODS shall incorporate access, water supply and other fire suppression and emergency access/response needs in the proposed project design. Said designs shall be developed in consultation with the Fire, Police and Public Works Departments, and shall address such items as the location and design of streets and cul-de-sacs, residential numbering, mapping, and other measures deemed necessary to permit access of emergency vehicles and firefighting equipment, minimize response times and provide adequate evacuation routes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. The ODS shall install fire hydrants and water distribution facilities which will provide fire flows which are adequate to support the City's existing ISO rating and which conform to adopted Building Code Fire Safety Standards, for all of the uses proposed within the project area.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. The ODS shall pay Public Facility Fees to defray capital facilities costs associated with expanding law enforcement services.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. The ODS shall fence and monitor contractors' storage yards during the construction phases of the project to prevent theft and vandalism, and to reduce calls for assistance from the Police Department.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. The ODS shall ensure that appliances such as stoves, microwaves, refrigerators, etc., are not installed until the day a new owner completes the final walkthrough of the residence. If installed earlier, the residence must remain securely locked after hours and on weekends/holidays.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. The ODS shall ensure that during construction, a licensed, uniformed security guard must be present during the evening hours (Monday through Friday), and 24 hours per day on weekends and holidays when the developer is not on site.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. The ODS shall fence the entire project site so that it is inaccessible to the public after hours and on weekends and holidays until residents begin occupying the new homes. The fence shall be maintained as needed during the project.</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Mitigation Measures Before</th>
<th>Mitigation Measures After</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>The OOS shall provide night lighting throughout the night, every night, so that it clearly illuminates the majority of the project site and the entire street within the project area.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>The OOS shall ensure that the entrance/exit gate (must be Knoxx-Box compatible), as well as perimeter walls be built and operational prior to the start of construction.</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>The OOS will be responsible for providing a post-construction video surveillance system that covers the area inside the condominium project or at a minimum surveillance covering the entrance/exit points.</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>The owners, developers and/or successors-in-interest shall pay adopted developer fees toward construction of new schools prior to issuance of construction permits in accordance with the rate schedule established by SUSD.</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>The owners, developers and/or successors-in-interest shall coordinate with SUSD as required to assure adequate school facilities will be available concurrently with the project-related need for such facilities consistent with General Plan Public Facilities Goal 2, Policy 7, 8 and 9.</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>The owners, developers and/or successors-in-interest shall be responsible for construction of a 12-foot bicycle/pedestrian path along the East Bay Municipal Utility District adjacent to the project site, unless it is opposed by the surrounding land users. If the bicycle/pedestrian path is not constructed, the OOS shall be responsible for their proportionate share of the cost of development of bike paths within Recreational facilities have been addressed under Section 13. Public Services.</td>
<td></td>
</tr>
</tbody>
</table>

14. RECREATION

15. TRANSPORTATION/CIRCULATION

Project Traffic Impacts

- PS 1. The owners, developers and/or successors-in-interest shall be responsible for payment of required Public Facility Fees for transportation improvements. LS
- 2. The owners, developers and/or successors-in-interest shall be responsible for their proportionate share of costs of off-site improvements required under the cumulative scenario. LS

18. UTILITIES/SERVICES SYSTEMS

Project Impacts on Utilities and Services Systems

- LS 1. The property owners, developers and/or successors-in-interest shall demonstrate compliance with the City Code Sections 7-850, 7-850.1, and 7-850.2 to the Municipal Utilities Department to insure that sufficient post-construction stormwater pollution prevention practices consistent with the Stockton Stormwater Quality Criteria Plan have been incorporated into the project design. LS
- 2. The property owners, developers and/or successors-in-interest shall submit a Stormwater Pollution Prevention Plan to the Municipal Utilities Department that includes both construction stage and permanent stormwater pollution prevention practices. This Plan shall be developed during the project design phase and submitted and approved prior to the start of construction. LS
- 3. As of November 25, 2003, project improvements plans must comply with the Storm Water Quality Control Criteria Plan, as outlined in the City’s Phase I Storm water NPDES permit issued by the California Water Quality Control Board, Central Valley Region (Order No. R5-2002-0181). LS
SUMMARY OF ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Mitigation Measures</th>
<th>Significance Before Mitigation Measures</th>
<th>Significance After Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. As required by the Storm water Quality Control Criteria Plan, the ODS must establish a maintenance entity acceptable to the City to provide funding for the operation, maintenance, and replacement costs of the storm water best management practices.

5. The property owners, developers and/or successors-in-interest shall conduct an engineering analysis acceptable to the Director of Municipal Utilities, which demonstrates that the water system improvements to be constructed within the City of Stockton water service area are sufficient to meet the following conditions:

 a. With a given system pressure of 45 psi at all future points of connection to the City water system and no wells on or within the subdivision, the internal water system improvements shall be sized to provide at least 40 psi pressure at an location during the period of peak hour demand (peak hour demands shall be calculated at 172% of maximum daily demands).

 b. With a given system pressure of 45 psi at all future points of connection to the City water system and no wells on or within the subdivision, the internal water system improvements shall be sized to provide at least 20 psi pressure at any location during the period of maximum day demand (maximum day demands shall be calculated at 216% of the average day demands) combined with a fire flow of 2,000 gpm out of any fire hydrant in the subdivision.

6. A hydrologic and hydraulic analysis shall be performed to determine the existing storm drainage infrastructure and Blossom Ranch Storm Pump Station is capable of accommodating the additional runoff generated from the proposed subdivision. If the existing capacity of the storm drainage infrastructure and pump station is inadequate to accept the additional runoff, the property owner, developer and/or successors-in-interest shall make all necessary improvements as required by the Stockton Municipal Code. Building permits shall not be approved until storm drainage improvements are completed.

Mitigation Measure Key Code:
- S=Significant
- CS=Cumulatively Significant
- PS=Potentially Significant
- LS=Less than Significant
- SOC=Statement of Overriding Considerations previously adopted
CITY OF STOCKTON
ENVIRONMENTAL INFORMATION AND INITIAL STUDY FORM
(Pursuant to Cal. Code of Regulations, Title 14, Sections 15063-15065)

INITIAL STUDY FILE NO: IS 10-06
EIR FILE NO: N/A
INITIAL STUDY FILING DATE: May 15, 2006

LEAD AGENCY
City of Stockton
Community Development Dept.
Planning Division
345 North El Dorado Street
Stockton, CA 95202
(209) 937-8266

Note: The purpose of this document is to describe the project, its environmental setting, any potentially significant adverse environmental impacts which may be caused by the project or which may affect the project site and/or surrounding area, and any mitigation measures which will be incorporated into the project. Please complete all applicable portions of Section A (General Information/Project Description) and as much of Section B (Project Site Characteristics) as possible. If a question is not applicable, then, respond with "N/A". After completing Sections A and B, please sign the certification following Section B and attach any supplemental documentation and exhibits as deemed necessary. The completed form and applicable fees should be filed at the above-noted Lead Agency address. PLEASE TYPE OR PRINT IN DARK INK.

A. GENERAL INFORMATION/PROJECT DESCRIPTION (Completed by Applicant)

1. Project Title: Montage Condominiums General Plan Amendment, Rezoning, Tentative Map And Planned Development Permit

2. Property Owner(s): Quiltro Quest LLC
 Address: 11812 Kemper Road, Auburn, CA Zip 95603
 Property Owner(s): Alan J. McMurry, Jr.
 Address: 1045 41st Street Sacramento, CA Zip 95819

3. Applicant/Proponent: KB Homes
 Contact Person: Brent Pedesto
 Address: 2420 Del Paso Road, Suite 200, Sacramento, CA Zip 95834 Phone (916) 576-5800

4. Consulting Firm: InSite Environmental, Inc.
 Contact Person: Charlie Simpson
 Address: 6683 Embarcadero Dr., Suite Q, Stockton, Ca Zip 95219 Phone (209) 472-8850
 Consulting Firm: Stantec Engineering
 Contact Person: Mike Persak
 Address: 1016 12th Street, Modesto, CA Zip 95354 Phone (209) 521-8986

5. Project Site Location:
 a. Address (if applicable) or Geographic Location: The project area is located adjacent to the west side of Holman Road east of the Union Pacific Railroad (UP/SP), south of Hammer Lane and north of Saxon Drive. It is located in Section 13 of the CM Weber Grant "El Rancho Del Campo De Los Francoses," within Township 2 North, Range 6 East, on the USGS Lodi South, California Quadrangle Map.
 b. Assessor's Parcel Number(s): 128-030-01, 128-030-02, 128-030-03, 128-030-04
 c. Legal Description [Attach metes and bounds (bearings and dimensions) description and corresponding map(s) or list existing lots of record from recorded deed]: To be provided by others.

6. General Project Description: (Describe the whole action, including later phases of the project and any secondary, support, or offsite features necessary for its implementation. Attach additional sheets if necessary.)
The project site consists of 19.1 acres of vacant graded land in an urbanized area of the City of Stockton. The site is south of Hammer Lane and existing commercial property, east and north of single-family homes and west of commercial property and vacant land.

The proposed project involves a request for City approval of 1) General Plan Amendment of the 19.1-acre site from Commercial to Low/Medium Density Residential; 2) rezoning of the site from CA Commercial Auto District to RM (Residential Medium Density) 3) a tentative map for a one-lot subdivision creating a 222-unit residential condominium project; 4) a Planned Development of a 222-unit condominium project; 5) associated street and utility improvements; and 6) street abandonment of the identified portion of Auto Center Circle for public use (Figure 8).

The Montage Condominiums project involves the development of 19.1 acres in the City of Stockton for medium-density condominium residential use. The project would include 37 buildings that would house a total of 222 two-bedroom two-bath condominiums. The buildings will each house six-condominium units. The proposed project would include a pool area, toddler lot, basketball court and barbeque area for future residential use. Open space and recreational areas would total 6.80 acres, 37.7 percent of the total project site.

The proposed project would be a gated community bordered by an eight-foot masonry wall to the north and east and a six-foot wooden fence to the south. Access to the proposed project would be located west of Holman Way on Auto Center Circle through a 50-foot gated entryway. Private 30 to 40-foot wide streets would provide access to all buildings within the proposed development, and typical driveways would be 20-feet wide. Garages would be attached to all units providing two parking spaces for each condominium. An additional 86 guest parking spots would be located throughout the project site exceeding the City standard of 1.5 spaces per unit plus 25% for guest parking. The project would have two emergency vehicle entry and access points located at the eastern boundary of the project site, north and south of Auto Center Circle.

Lawn, trees and planters would be located throughout the project site, surrounding proposed buildings and open space. Landscaping would border the masonry walls located north and east of the project site visible to outside on-lookers.

Auto Center Circle would remain in private use within the proposed Montage Condominiums Project. The proposed project would provide and maintain all interior private streets that would serve the proposed project. A 12-foot Class 1 bike/pedestrian path is proposed along the EBMUD easement located adjacent to the north boundary of the project. Public access to the bike/pedestrian path is provided east of the project site at Holman Road.

The projects would include utility and street right-of-way improvements. Water, sewer and storm drain lines would be provided by the City of Stockton and connect to existing lines located in Auto Center Circle. Gas and electric service will be provided by PG&E.

7. Applications Currently Under City Review:

<table>
<thead>
<tr>
<th>Application</th>
<th>File Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Study</td>
<td>IS 10-06</td>
</tr>
<tr>
<td>General Plan Amendment</td>
<td>GPA 2-06</td>
</tr>
<tr>
<td>Rezoning</td>
<td>Z-2-06</td>
</tr>
<tr>
<td>Tentative Subdivision Map</td>
<td>TM 9-06</td>
</tr>
<tr>
<td>Planned Development</td>
<td>PD 3-08</td>
</tr>
</tbody>
</table>

8. Other Permits/Reviews Required By the City, County, State, Federal Or Other Agencies For Project Implementation:

<table>
<thead>
<tr>
<th>Agency</th>
<th>Permits/Reviews:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockton Planning Commission</td>
<td>GPA, Rezoning, Tentative (on approval) Map and Planned Development (on approval)</td>
</tr>
<tr>
<td>Stockton City Council</td>
<td>GPA, Rezoning, Tentative Map and Planned Development</td>
</tr>
<tr>
<td>Stockton Community Development Department Planning/Building Division</td>
<td>Design Review/Site Plan Review and Future Building Permits</td>
</tr>
<tr>
<td>Public Works Department</td>
<td>Site Improvement Plan</td>
</tr>
</tbody>
</table>
9. Describe Proposed General Plan (GP) Amendments and/or Prezoning/Rezoning (Zoning) Requests, If Applicable:

General plan amendment request is for the proposed project site of 19.1 acres to be changed from Commercial to Low/Medium Density Residential. Rezoning request for the site would include the change from CA Commercial Auto District to RM (Residential, Medium Density).

10. Describe Any Site Alterations Which Result From The Proposed Project: (Address the amount and location of grading, cuts and fills, vegetation/tree removal, alterations to drainage, removal of existing structures, etc.)

The proposed residential development would involve grading of proposed street rights-of-way, lot grading and other physical disturbance.

11. Specific Project Description/Operational Characteristics:

a. Describe Proposed Commercial, Industrial, institutional, and Recreational Uses (all non-residential uses):

The project does not include a commercial development proposal. The project would eliminate existing commercial zoning and potential future commercial use of the project site. Recreational uses associated with proposed residential development would include pool, barbeque area, basketball court and toddler park. A 12-foot Class 1 bike/pedestrian path is also proposed along the EBMUD easement north of the project site.

b. Describe Proposed Residential Land Uses: [check (v) or specify applicable types]

<table>
<thead>
<tr>
<th>PURD</th>
<th>Conventional 1-F, 2F, or 3F</th>
<th>v Condominiums</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Stay/Single Room Occupancy Facilities</td>
<td>Dormitory/Rooming/Board ing Houses</td>
<td>Residential Care Facility</td>
</tr>
<tr>
<td>Other</td>
<td>Mobile Homes</td>
<td>Townhouses</td>
</tr>
<tr>
<td>Elderly Apartments</td>
<td>Motel/Hotel/B&B</td>
<td>Apartments</td>
</tr>
<tr>
<td>Employee Housing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Residential Land Use Summary:

<table>
<thead>
<tr>
<th>Types of Unit</th>
<th>Zoning</th>
<th>Acreage</th>
<th>Proposed Units</th>
<th>Units/Acre</th>
<th>Max. Unit Allowed/Max. Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium-Density Residential</td>
<td>RM</td>
<td>19.1</td>
<td>222</td>
<td>12</td>
<td>332</td>
</tr>
</tbody>
</table>

(2) Describe Project Phasing: The project does not include a phasing proposal.

(3) Population Projection for the Proposed Project: 697
Projected Population Density (Person/Unit): 3.14

(4) Student Generation Projected for Proposed Project: 158
Projected Student Density (K-12 Student/Unit): 0.711

(5) Estimated Total Number Of Vehicle Trip Ends (TE) Per Day Generated By Proposed Project: 1,206

(6) Estimated Maximum Number Of TE/Day Based On Proposed General Plan Designations: 1,908

12. Will the project generate any substantial short-term and/or long-term air quality impacts, including regional/ cumulative contributions? YES If so, estimate the type and amount of emissions below (e.g., tons per year of PM10, ROG, Nox, and CO): potential air quality impacts of the project are addressed in Section 3.

a. Construction Emissions: See I.S., Section 3 Air Quality
b. Stationary Source Emissions: See I.S., Section 3 Air Quality
c. Mobile Source Emissions: See I.S., Section 3 Air
B. PROJECT SITE CHARACTERISTICS (Completed by Applicant and/or Lead Agency, as applicable):

1. Total Site Acres (Ac.) (or) Square Footage (S.F.): 19.1 Ac.

2. Ex. General Plan Designations
<table>
<thead>
<tr>
<th>Acres (net)</th>
<th>Ex. Zoning (City or County)</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>19.1</td>
<td>CA Commercial Auto District</td>
</tr>
</tbody>
</table>

3. Identify and describe any specific plans, redevelopment areas, and/or other overlay districts/zones which are applicable to the project site: NA

4. Identify Existing On-Site Land Uses and Structures: Vacant, 19.1 acres

5. Prior Land Uses if Vacant: None known.

6. Describe Any On-Site And Adjacent Utility/Infrastructure Improvements And Right-Of-Ways/Easements:
 There are no on-site infrastructure improvements. Water, storm drain and sewer lines are located in adjoining streets and will be extended along Auto Center Circle to serve the proposed project.

7. Adjacent Land Uses, Zoning And General Plan Designations:

<table>
<thead>
<tr>
<th>Adjacent Uses</th>
<th>Zoning (City)</th>
<th>General Plan Designations</th>
</tr>
</thead>
<tbody>
<tr>
<td>North: Auto Sales, EBMUD r/w</td>
<td>CA (City)</td>
<td>Commercial</td>
</tr>
<tr>
<td>South: Single-Family Residential</td>
<td>RL (City)</td>
<td>Low/Medium Residential</td>
</tr>
<tr>
<td>East: Auto Sales, Commercial Vacant Land</td>
<td>CA (City)</td>
<td>Commercial</td>
</tr>
<tr>
<td>West: Single-Family Residential, UPRR</td>
<td>RL (City)</td>
<td>Low/Medium Residential</td>
</tr>
<tr>
<td></td>
<td>CA (City)</td>
<td>Commercial</td>
</tr>
</tbody>
</table>

8. If site contains at least ten (10) acres of undeveloped and/or cultivated agricultural land, complete the following:
 a. Is the land classified as "Prime Farmland" and/or "Farmland Of Statewide Importance" (as identified on the San Joaquin County "Important Farmland Map")? Yes, See I.S., Section 2
 b. Is the site under a Williamson Act Land Conservation contract? No
 c. If the site is under contract, has a "Notice Of Non-Renewal" been filed? N/A

9. Describe important on-site and/or adjacent topographical and water features:
 On-Site: None, See I.S. Section 8.
 Adjacent: None, See I.S., Section 8.

10. Describe any important on-site and/or adjacent vegetation/wildlife habitat:
 On-Site: None, See I.S., Section 4.
 Adjacent: None, See I.S., Section 4.

11. Describe any general and special status wildlife species known to inhabit the site or for which the site provides important habitat: None, See I.S., Section 4.

12. Identify and describe any significant cultural resources on or near the site (attach a "Records Search", "Site Survey", and/or other documentation, if applicable): None, See I.S., Section 5.

13. Identify and describe any on-site or nearby public health and safety hazards or hazardous areas (attach a "Preliminary Site Assessment" and/or "Remediation Plan", if applicable): None, See I.S., Section 7.

14. Identify and describe any potentially hazardous geologic/soil conditions: Soils have high shrink-swell potential, slow permeability, and low strength limitations, See I.S., Section 6.

15. Is any portion of the site subject to a 100-year flood? No If so, what flood zone? N/A, See I.S., Section 8.

16. Identify and describe, below, any existing and/or projected on-site ambient noise levels which exceed adopted noise standards (plot noise contours on proposed tentative maps or on a site plan for the project, if applicable):

Montage Condominiums IS/MND
a. Do on-site ambient noise levels from existing land uses (locally regulated noise sources) located on-site or off-site exceed adopted noise standards? No If so, describe: See I.S., Section 11.

b. Does or will transportation-related noise exceed 60 dB Ldn at any exterior location or 45 dB Ldn at any interior location? No If so, describe: See I.S., Section 11.

17. Indicate by checking (✓) whether the following public facilities/infrastructure, utilities, and services are presently or will be readily available to the project site and whether the proposed project can be adequately served without substantial improvements or expansion of existing facilities and services. If new or expanded/modified facilities or services are necessary, explain below.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Water Supply/Treatment Facilities</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>b. Wastewater Collection/Treatment Facilities</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>c. Storm Drainage, Flood Control Facilities</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>d. Solid Waste Collection/Disposal/Recycling Services</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>e. Energy/Communication Services</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>f. Public/Private Roadway And Access Facilities</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>g. Public/Private Parking Facilities</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>h. Other Public/Private Transportation Services</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(public transit, railway, water or air transport, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Fire And Emergency Medical Services</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>j. Police/Law Enforcement Services</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>k. Parks And Recreation Services</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>l. Library Services</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m. General Government Services</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>n. School Facilities</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Explanation(s): Water, wastewater collection and storm drain facilities as well as electrical, gas, phone and cable television service will be made available to the proposed project site in conjunction with planned development construction. Facilities for each of these utilities will be extended from Holman Road to the proposed project.

SIGNATURE (Completed by Owner or Legal Agent)

I certify, under penalty of perjury, that the foregoing is true and correct and that I am (check one):

- Legal property owner (owner includes partner, trustee, trustor, or corporate officer)
- Owner's legal agent, authorized project applicant, or consultant (attach proof of consent to file on owner's behalf)

Charlie Simpson, InSite Environmental ________________________ Date ________________________

Montage Condominiums IS/MND ________________________ 5
C. ENVIRONMENTAL SIGNIFICANCE CHECKLIST. (Completed by Lead Agency or Authorized Consultant - - Check (✓)
Responses and Provide Supporting Documentation and References, as applicable.)

- In completing this Checklist, the Lead Agency shall evaluate each environmental issue based on the preceding Sections A and B of this Initial Study and shall consider any applicable previously-certified or adopted environmental analysis. The decision as to whether a project may have one or more significant effects shall be based on substantial evidence in light of the whole record before the Lead Agency. All answers must take into account the whole action involved, including offsite as well as onsite, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.

- Following each section of this Checklist is a subsection to incorporate environmental documentation and to cite references in support of the responses for that particular environmental issue. A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources the Lead Agency cites (in parentheses) at the end of each section. This subsection provides (a) the factual basis for determining whether the proposal will have a significant effect on the environment; (b) the significance criteria or threshold, if any, used to evaluate each question; and (c) the new or revised mitigation measures and/or previously-adopted measures that are incorporated by reference to avoid or mitigate potentially significant impacts. Mitigation measures from Section D, "Eariler Analyses", may be cross-referenced. In addition, background and support documentation may be appended and/or incorporated by reference, as necessary. This section is required to support a "Mitigated Negative Declaration." If an Environmental Impact Report (EIR) will be prepared, this section shall provide an "EIR Scope of Work" in order to focus on issues to be addressed in the Draft EIR.

- A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project site is not subject to flooding). A "No Impact" answer should be explained if it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).

- Once the lead agency has determined that a particular physical impact may occur, the checklist answers must indicate whether the impact is "Potentially Significant", "Less-than-Significant with Mitigation incorporated", or "Less-than-Significant, "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant and mitigation measures to reduce the impact to a less-than-significant level have not been identified or agreed to by the project applicant. If there are one or more "Potentially Significant Impact" entries upon completing the Checklist, an Environmental Impact Report (EIR) is required.

- The "Less-than-Significant with Mitigation Incorporated" category applies when revisions in the project plans or proposals made, or agreed to, by the applicant would avoid or mitigate the effect(s) of the project to a point where, clearly, no significant adverse environmental effect would occur. The lead agency must describe the mitigation measures and briefly explain how they reduce the effect to a less-than-significant level. Upon completing the Checklist, if there is no substantial evidence in light of the whole record before the Lead Agency that the project, as revised, may have a significant effect on the environment, then a "Mitigated Negative Declaration" shall be prepared.

- The Checklist shall incorporate references to common or comprehensive information sources [e.g., the City's General Plan, redevelopment plans, infrastructure master plans, zoning ordinance/development code[s], and related environmental documents, etc.]. for potential regional (Citywide) and cumulatively considerable impacts. In addition, any prior site-specific environmental documents and/or related studies (e.g., traffic studies, geo-technical soils reports, etc.) should be cited and incorporated by reference, as applicable. Reference to a previously prepared or outside document should, when appropriate, include a reference to the page or pages where the statement is substantiated. Referenced documents shall be available for public review in the City of Stockton Community Development Department, Planning Division, 345 N. El Dorado St., Stockton, CA.

- Supporting Information Sources: A source list should be attached and other sources used and/or individuals contacted should be cited in the discussion.

NOTE: ALL SUPPORTING INFORMATION FOR THE FOLLOWING CHECKLIST IS PROVIDED IN SECTON F.
1. **AESTHETICS** — Would the project:

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant Impact With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Have a substantial adverse effect on a scenic vista?</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>b. Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings along a scenic highway?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Create a new source of substantial light or glare that would adversely affect daytime or nighttime views in the area?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION:

The project site is comprised primarily of vacant land and a roadway. An existing auto dealership and the EBMUD pipeline right-of-way is located to the north of the proposed project. The parcels south of the site are used for single-family homes, and an approximately 12-foot above-ground concrete vault is located south of the site. Lands to the east of the project include an existing auto dealership, located north of Auto Center Circle, and vacant land south of Auto Center Circle.

The project site and surrounding streets do not offer scenic vistas, and there are no existing designated scenic roads or highways in the project vicinity. The project area is commercialized. The project site would be subject to existing commercial and residential street lighting located north, south and east of the project.

Impacts on On-Site Aesthetic Resources

Existing vacant land would be replaced with urban medium-family residential condominiums. Although any existing open space value of the site would be lost, planned residential living space would be gained, and the site is planned for urban development. The proposed project would be subject to City of Stockton Development Code and Design Review requirements. The project would therefore be required to be aesthetically consistent with City Guidelines as well as existing residential development in the area. This impact is considered less than significant.

Impacts of Off-Site Aesthetic Conditions

The project is adjacent to existing auto dealerships to the north and east. A proposed eight-foot masonry wall would be located to the north and east of the project site, shielding the proposed condominiums from any visual effect of the adjoining auto commercial use. This impact is considered less than significant.

Light and Glare Impacts

The proposed project is located south and west of existing auto back-lots for the adjoining Ford and Chevrolet dealerships. Back-lots are used for storage of excess inventory before it is brought out to the main lot for sale. These back-lots have standard lighting poles consistent with the rest of the Stockton Auto Mall; all lights are shielded to direct light and glare towards the ground and are lit for security purposes to a minimal level. The Ford Motor Company back-lot is located approximately 100-feet north of the proposed project and would be separated from the project site by an eight-foot masonry wall. The Chevrolet back-lot is located approximately 50 east of the proposed site and is separated by a eight-foot masonry wall. Lighting from existing uses is not expected to create any substantial light and glare impacts on the proposed project site, and the potential light and glare impact is considered less than significant.

The proposed project would involve the installation of driveway and security lighting along the proposed entry point and sidewalks leading to individual condominiums. Although new lighting would be established by the project, the lighting would be located in an area planned for urban use, installed per City standards, and would be consistent with the lighting level in the surrounding residential areas; proposed lighting would be consistent with or less than lighting in nearby auto commercial development to the north and east. The project would therefore not involve substantial light or glare impacts.
Level of Significance: Potentially significant

Mitigation Measures:

1. The owners, developers and successors-in-interest (ODS) shall be responsible for the installation and maintenance of an eight-foot high masonry wall along the north and east boundary of the site. The solid wall shall be installed prior to the issuance of any residential building for the lots adjacent to the above-noted boundaries of the subdivision.

2. The solid wall within the condominium project shall be subject to Architectural Design Review prior to submittal of a building permit.

3. The ODS shall be responsible for design, installation and maintenance of the landscaping and automatic irrigation system adjacent to the walls along the north, west and southwest boundaries of the project site.

4. The ODS shall be responsible for the installation of extensive landscaping with a minimum of 15-gallon trees within the project site.

Significance After Mitigation: Less than significant

Implementation: The owners, developers, and/or successors-in-interest will be responsible for design, installation, and maintenance of the masonry wall, landscaping and irrigation system within the subdivision area.

Monitoring: The Planning Division of the Community Development Department shall be responsible for review of the wall specific plan and landscaping plan adjacent to the wall as on the above noted landscaping lots prior to issuance of any residential building permit.

2. AGRICULTURAL RESOURCES — In determining whether impacts on agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation And Site Assessment Model (1997) prepared by the California Department Of Conservation. Would the project:

<table>
<thead>
<tr>
<th>Potential Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Conflict with existing zoning for agricultural use or conflict with a Williamson Act contract?</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>c. Involve other changes in the existing environment that, due to their location or nature, could result in conversion of Farmland to non-agricultural use?</td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

DISCUSSION:

The project site has historically been in agricultural use. The State's Important Farmland Map for the San Joaquin County (1998) indicates that project site soils are "Prime Farmland". However, the site has been approved for urban commercial development as a part of the Auto Center II development; as a result of this and other development approvals, lands to the north, south, east and west of the project site are developed in commercial and single-family residential use. The project is an infill development. It is within the City's existing designated Urban Services Boundary and within a designated Future Growth Area.

The Stockton General Plan EIR (Paoli, 1989) as well as the Auto Center II EIR addressed the potential effects of planned urban development on agricultural lands, including the project site. The proposed project would contribute to this previously-identified impact by developing the last remaining agricultural site in an urbanized area. However, the project would involve a relatively small loss of agricultural land, and potential impacts on agriculture would be no more severe than as described in the previous EIRs. At the time of the previous EIRs, no feasible mitigation was identified for agricultural land conversion impacts. The City is, however, considering the adoption of an agricultural land conversion impact fee as part of its ongoing general plan revision program. This fee would apply to the project when adopted.
The project's agricultural land conversion effect has been addressed in a prior EIR. The potential impacts of the proposed project would be consistent with or less than those identified in the prior EIR. The proposed project would not involve any new significant or potentially significant environmental effects in this issue area, and no additional mitigation measures are necessary or available. Statements of Overriding Considerations for this issue were adopted in conjunction with approval of the Stockton General Plan and the Auto Center II project, and these prior SOC remain operative. As a result, and pursuant to CEQA Guidelines Section 15183, this environmental effect does not require additional consideration in this environmental review.

The project would be located adjacent to an existing auto dealership to the north and east and an existing single-family neighborhood to the south. The proposed project would not result in any substantial influence on or conversion of agricultural lands, or interference with ongoing agricultural use in the project vicinity.

The project site is not under Williamson Act contract.

Level of Significance: Less than significant
Mitigation Measures: None Required

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Conflict with or obstruct Implementation of the applicable air quality plan?</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Violate any air quality standard or contribute substantially to an existing or projected air quality violation?</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is a non-attainment area for an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Expose sensitive receptors to substantial pollutant concentrations?</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>e. Create objectionable odors affecting a substantial number of people?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION:

The San Joaquin Valley Air Pollution Control District (SJVAPCD) has jurisdiction over most air quality matters in the San Joaquin Valley Air Basin (SJVAB) and is responsible for implementing certain programs and regulations required by the federal Clean Air Act (CAA), and the state Clean Air Act (CCAA). The SJVAB is considered a non-attainment area for ozone (which is formed in the presence of sunlight from emissions of nitrogen oxides and reactive organic gases) and respirable particulate matter (PM10), because concentrations of these pollutants sometimes exceed the standards. The potential impacts of the proposed project were evaluated according to SJVAPCD's Guide for Assessing and Mitigating Air Quality Impacts (GAMAQI).

GAMAQI provides a three-tier framework for analysis of impacts regarding air quality. Residential projects that have less than 220 low rise apartment units or less than 270 condominium units (GAMAQI Table 5-3a) qualify for the small project analysis level (SPAL) and need no quantification of ozone precursors. The project would include a maximum of 222 condominium units, and therefore would have a less than significant impact on ozone precursors.

The proposed project would involve disturbance of the site and potential for dust generation during construction activities. As described in the GAMAQI, the SJVAPCD has determined that implementation and enforcement of dust control measures set forth in their Regulation VIII will reduce construction-related air quality impacts to a less-than-significant level. Compliance with SJVAPCD's adopted Regulation VIII is required by the mitigation measures below.
The SJVAPCD Rule 9510 Indirect Source Review was adopted December 15, 2005 and took effect March 1, 2008. The purpose of Rule 9510 is to reduce emissions of NOx and PM10 from new proposed development in San Joaquin County. The rule applies to development projects that include: 50 residential units, 2,000 square feet (SF) of commercial space, 25,000 SF of industrial space, 20,000 SF of medical office space, 30,000 SF of general office space, 9,000 SF of educational space, 10,000 SF of government space, 20,000 SF of recreational space or 9,000 SF of uncategorized space. The proposed project would include 210 residential units with a mitigated baseline of approximately 3.48 tons per year of NOX and 1.56 tons per year of PM10. These amounts are below the GAMAQI significance thresholds. The project does not, however, qualify for any of the exemptions found within Section 4.0 of the Indirect Source Rule. Compliance with SJVAPCD's adopted Rule 9510 Indirect Source Review is required by the mitigation measures below.

There are no known sources of toxic air contaminants in the project vicinity. There are no hazardous materials on site that could affect project construction workers or nearby sensitive receptors (see Section 7 Hazards below for further discussion). The project site is not subject to any known substantial odor sources nor would it generate any substantial odors. These issues are considered less than significant.

Level of Significance: Potentially Significant

Mitigation Measures:

1. During construction, the District will comply with required control measures specified in San Joaquin Valley Air Pollution Control District Regulation VIII (Fugitive Dust Rules), including compliance with the following mitigation measure 2 through 8.

2. Visible Dust Emissions (VDE) from construction, demolition, excavation or other earthmoving activities related to the project shall be limited to 20% opacity or less, as defined in Rule 8011, Appendix A. The dust control measures specified in mitigations 3 through 9 shall be applied as required to maintain the VDE standard.

3. Pre-water all land clearing, grubbing, scraping, excavation, land leveling, grading, cut and fill, and phase earthmoving.

4. Apply water, chemical/organic stabilizer/suppressant, or vegetative ground cover to all disturbed areas, including unpaved roads.

5. Restrict vehicular access to the disturbance area during periods of inactivity.

6. Apply water or chemical/organic stabilizers/suppressants, construct wind barriers and/or cover exposed potentially dust-generating materials.

7. When materials are transported off-site, stabilize and cover all materials to be transported and maintain six inches of freeboard space from the top of the container.

8. Remove carryout and trackout of soil materials on a daily basis unless it extends more than 50 feet from site; carryout and trackout extending more than 50 feet from the site shall be removed immediately. The use of dry rotary brushes is expressly prohibited except where preceded or accompanied by sufficient wetting to limit the visible dust emissions. Use of blower devices is expressly forbidden. If the project would involve more than 150 construction vehicle trips per day onto the public street, additional restrictions specified in Section 5.8 of Rule 8041 will apply.

9. Traffic speeds on unpaved roads shall be limited to 15 mph.

10. The project is subject to compliance with the Indirect Source Rule 9510 of the San Joaquin Valley Air Pollution Control District.

Significance After Mitigation: Less than significant

Implementation: The owners, developers, and/or successors-in-interest will be responsible for compliance with the ISR and the above construction standards in future project design and construction.

Monitoring: The SJVAPCD is responsible for verifying compliance with district rules during project design, construction and operation.
4. **BIOLOGICAL RESOURCES** – Would the project:

- Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

- Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

- Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marshes, vernal pools, coastal wetlands, etc.) through direct removal, filling, hydrological interruption, or other means?

- Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

- Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

- Conflict with the provisions of an adopted habitat conservation plan, natural community conservation plan, or other approved local, regional, or state habitat conservation plan?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION:

Moore Biological prepared a baseline biological assessment of the subject property in November 2005. Prior to its field survey, Moore obtained information from California Fish and Game (CDFG) and Natural Diversity Database (CNDBB, 2004) to identify wildlife and plant species that have been previously documented in the project vicinity or have the potential to occur based on suitable habitat and geographical distribution. The field survey was conducted on October 25, 2005 and noted the current habitat conditions, general habitat types, and plant and wildlife species, and included a search for jurisdictional Waters of the U.S. (i.e., wetlands) as defined by the U.S. Army Corps of Engineers (ACE, 1987).

The project site consists of a leveled field with a variety of grasses, weeds and a few volunteer almond trees along the fence-lines. Auto Center Circle roadway currently divides the property in half. There are no known sensitive trees, plants or animal species or site-specific habitat for these species located on the project site. There are no heritage oak trees on the project site. The site is suitable for foraging use by Swainson’s hawks and other species.

The proposed project site is located within the City’s Urban Service Boundary and is within the area covered by the San Joaquin County Multi-Species Habitat Conservation and Open Space Plan (SJMSHCP). The SJMSHCP is a comprehensive program for assessing and mitigating the biological impacts of land development. A project that complies with the Plan can be considered to result in less than significant impacts on biological resources under CEQA. However, participation is generally optional; that is, projects may use the SJMSHCP to reach compliance with the various statutes and regulations that apply to biological resource protection or it may comply with those requirements independently, without the benefit of the Plan.

The SJMSHCP is to be locally implemented by the San Joaquin County Council of Governments (COG). The compliance process outlined in the Plan has been adopted by federal and state agencies with jurisdiction or trusteeship over biological resources. In addition, the SJMSHCP has been adopted locally by San Joaquin County, the COG, the City of Stockton and other incorporated cities and entities in San Joaquin County.

The proposed project site is located within the City’s Urban Service Boundary, within the SJMSHCP within Category A (no-pay) zone, defined by SJMSHCP. Impact assessment and mitigation measures for sensitive species is addressed by implementation of the
SJMSHCP, as discussed above. This would not include the payment of fees but would require conformance with all other SJMSHCP requirements, including the implementation of required take-avoidance measures.

The proposed project would not result in the development of foraging and nesting habitat areas that are suitable for use by sensitive species. The project would not result in impacts on wetlands, riparian areas or known habitat areas for species not addressed by the SJMSHCP. As required by the following mitigation measures, the project applicants will be required to participate in the SJMSHCP by implementing Incidental Take Avoidance Measures. Assuming that any sensitive biological resources located on the project site are addressed by the Plan, with project participation in the Plan, the project would have less than significant effects on biological resources.

Level of Significance: Potentially significant

Mitigation Measures:

1. The owners, developers, and/or successors-in-interest shall mitigate for the proportionate loss of potential wildlife habitat from the project site by taking any actions required by the adopted San Joaquin County Multi-Species Habitat Conservation and Open Space Plan.

Significance After Mitigation: Less than significant.

Implementation: The owners, developers, and/or successors-in-interest will be responsible for compliance with the SJMSCP prior to the issuance of building permits.

Monitoring: The Community Development Department, Building Division, will verify that specified conditions are met before permit issuance, and for field review of compliance with the conditions if needed.

5. CULTURAL RESOURCES -- Would the project:

 a. Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5

 b. Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5?

 c. Directly or Indirectly destroy a unique paleontological resource or site or unique geologic feature?

 d. Disturb any human remains, including those interred outside of formal cemeteries?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION:

The proposed 19.1-acre project is located in an urbanized area of southeast Stockton. The site has been fully disturbed through previous historical farming and ranching uses. Additional disturbance to the project site has occurred due to development of the Stockton Auto Center, the EBMUD pipeline, and other commercial and residential property to the east and south of the project site.

Genesis Society was retained to prepare a cultural resources record search and perform a pedestrian field survey of the project site. A copy of the Genesis report is on file with the Stockton Community Development Department. Prior to fieldwork, Genesis obtained information on the prehistoric, ethnographic and historic context of the study area through a review of existing cultural resource records. The survey included an intensive-level pedestrian survey on the entire project site.

The record search did not reveal any previously discovered cultural resources on the project site. Genesis conducted a field survey on November 30, 2005 and did not encounter any cultural resources on the site. No prehistoric or historic sites or features are currently recorded within or adjacent of the project area.

The project would have no effect on known cultural resources. Genesis Society found no prehistoric or historic resources on the project site. Development of any portion of the project site, however, has the potential to unearth buried and previously undiscovered cultural resources. In this case, proper treatment of any resources encountered would be necessary to avoid environmental affects. The following mitigation measures would address this issue.
Level of Significance: Potentially significant.

Mitigation Measures:

1. If any subsurface cultural resources are encountered during construction of the residential project, all construction activities in the vicinity of the encounter shall be halted until a qualified archaeologist can examine these materials and make a determination of their significance. The City of Stockton Community Development Department shall be notified, and the owners, developers and/or successors-in-interest shall be responsible for mitigation of any significant cultural resources pursuant to the CEQA Guidelines.

2. If human remains are encountered at any time during the development of the project, all work in the vicinity of the find shall halt and the County Coroner and the Community Development Department shall be notified immediately. The Coroner must contact the Native American Heritage Commission if the remains have been identified as being of Native American descent. At the same time, a qualified archaeologist must be contacted to evaluate the archaeological implications of the finds. The CEQA Guidelines detail steps to be taken when human remains are found to be of Native American origin.

Significance After Mitigation: Less than significant.

Implementation: The owners, developers and/or successors-in-interest will be responsible for imposing cultural resource protection controls on grading and excavation contractors.

Monitoring: The ODS shall be responsible for hiring an archaeologist to monitor archeological materials, if encountered, and to provide a report to the Community Development Department.

6. GEOLOGY AND SOILS -- Would the project:

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

(1) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.

(2) Strong seismic ground shaking?

(3) Seismic-related ground failure, including liquefaction?

(4) Landslides?

b. Result in substantial soil erosion or the loss of topsoil?

c. Be located on a geologic unit or soil that is unstable or that would become unstable as a result of the project and potentially result in an onsite or offsite landslide, lateral spreading, subsidence, liquefaction, or collapse?

d. Be located on expansive soil, as defined in Table 18-1-3 of the Uniform Building Code (1998), creating substantial risks to life or property?

e. Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems in areas where sewers are not available for the disposal of wastewater?
DISCUSSION:

The project site is located in an upland valley portion of the San Joaquin Valley on inter-bedded clay, silt, sand, and gravel deposits. There are no active or potentially active faults in the site vicinity. The site is subject to potentially intense seismic shaking. There are no other known geologic hazards that would affect the site. The soil on the project site consists of Stockton Clay, which is deep, poorly drained, and has a high shrink-swell potential. This soil is designated as a prime soil on the San Joaquin County Important Farmland map; however, it is entirely surrounded by urban and built up land.

Kleinfielder conducted a geotechnical report for the proposed project site and found that the site is geotechnically suitable for residential development. The project applicant will be responsible for complying with recommendations of the report. Specific conclusions and recommendations regarding the geotechnical aspects of design and construction can be found in the appendices of this document (Appendix B, Geotechnical Report). Potentially significant effects of the project include exposure to structural damage from seismic activity, but these would be reduced to less than significant by Uniform Building Code implementation. The project would result in minor soil erosion but would be located on expansive soils. The identified impacts would not be significant with the recommended mitigation measures.

Utilization of standard construction practices to control on-site soil erosion during project implementation is required by the City of Stockton’s Grading and Erosion Control Ordinance. These requirements are part of the City’s Stormwater Pollution Prevention Program and are discussed and applied to the project in Section 8 Hydrology and Water Quality.

Level of Significance: Potentially Significant.

Mitigation Measures:

1. The owners, developers, and successors shall have a licensed geotechnical or soils engineer prepare a soil report for the project site. The report shall identify engineering limitations of the soils and recommend measures to ensure that improvements will not be damaged by these limitations.

2. The project geotechnical/soil report shall be submitted to the Building Division for review and approval prior to the issuance of any building permit.

3. The owners, developers, and successors shall be responsible for implementation of all applicable recommendations contained in the geotechnical report.

Significance After Mitigation: Less than significant

Implementation: The owners, developers and/or successors-in-interest will be responsible for submitting the soils report for City review and for conforming subdivision improvement and building designs to soil reports specifications.

Monitoring: The Public Works Department and Community Development Department, Building Division will verify the adequacy of the soils reports and the incorporation of specifications into improvement plans and building designs.

7. HAZARDS AND HAZARDOUS MATERIALS -- Would the project:

<table>
<thead>
<tr>
<th>a. Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b. Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c. Emit hazardous emissions or involve handling hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d. Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65862.5 and, as a result,</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
would it create a significant hazard to the public or the environment?

e. Be located within an airport land use plan area or, where such a plan has not been adopted, be within two miles of a public airport or public use airport, and result in a safety hazard for people residing or working in the project area?

f. Be located within the vicinity of a private airstrip and result in a safety hazard for people residing or working in the project area?

g. Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

h. Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

DISCUSSION:

A Phase I Environmental Site Assessment was prepared for the project site by Kleinfelder, Inc. in November of 2005. The purpose of the report was to assess the "recognized environmental conditions" defined by ASTM E1527-00 standards. "Recognized Environmental Conditions" is defined as the presence or likely presence of any hazardous substances or petroleum products on a property under conditions that indicate an existing release, a past release, or a material threat of release of any hazardous substances or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property. This term also includes hazardous substances, or petroleum products even under conditions in compliance with laws (Kleinfelder, 2005).

The assessment included a field survey, investigation of historical photographs and maps, a review of Environmental Data Resources (EDR) report, a reconnaissance of adjacent properties, a review of a commercial data base of ASTM standard federal and state regulatory agency records, interviews with property personnel, review of city directories, review of local and state regulatory agency case files, a review of general geology and topography, sources of water, power and sewer and a complete evaluation of all information gathered.

The project site is relatively flat recently-disabled land. Groundwater flows towards the east and southeast and is located at a depth of approximately 45 feet below ground surface. Kleinfelder found no evidence of "potential recognized environmental conditions" in their review of historical aerial photos, and USGS topographic maps. There are no fire insurance maps for this project area.

Historically, the project site was identified as being in agricultural use. Due to its previous agricultural use it is possible that environmentally persistent pesticides may have been applied to the site, and pipelines or other subsurface structures could be present just below the surface. It would be common for these structures to contain asbestos. If pipelines are encountered during development or excavation of the property, care should be exercised determining whether these materials contain asbestos and if they do disposal of these items should be done in accordance with local, state and federal laws and regulations. Kleinfelder recommends sampling of organochlorine pesticide.

Kleinfelder reported that there is a refined 10-inch petroleum products pipeline operated by Kinder Morgan in the vicinity of the site. There was no visible evidence of petroleum leakage along this line; however, unidentified petroleum leaks can occur associated with pipelines.

Kleinfelder's field survey noted approximately 12 utility vaults, five clusters of vertical 2-inch PVC pipes, seven storm drains, five fire hydrants, eight sewer vaults, and six water vaults along Auto Center Circle. A marker for a water pipe and approximately six markers for a gas pipelines were observed on the site. A large concrete vault, approximately 12 feet by 12 feet, was located along the southern boundary of the site. Oil stains were observed on Auto Center Circle, but appeared to be contained on the concrete. No staining, odors or stressed vegetation was noted in association with these features and they are not expected to have an adverse impact on the project site. An approximately five cubic yard debris pile was located in the southwest corner of the site and is recommended to be removed from the proposed project location.

Kleinfelder noted the potential for contamination associated with the East Bay Municipal Utility District Mokelumne Aqueduct (EBMUDMA) and the Southern Pacific Railroad. The EBMUDMA is located adjacent to the north of the site. Kleinfelder noted there is a potential for contaminants associated with the aqueduct to migrate onto the site, soil sampling was recommended. Southern Pacific Railroad track is located west of the site. Kleinfelder noted that various herbicides, metals and possibly even waste oil may have been used for weed control along the railroad tracks. Hazardous substances may have been transported on site via railcars. Creosote or pentachlorophenols may have been used to treat the railroad ties in the rail bed. PCBs, oil, and solvents may be associated with said.
railroad/railcar/locomotive maintenance. However, no indications of spills or unusual odors were noted from soil at the property boundary near the railroad tracks.

Two off-site RECs were identified in the vicinity of the project site. A former leaking underground storage tank was listed at Stockton Steel, approximately 2,200 feet from the project site. The case was closed by San Joaquin County May 10, 1993 and it is not expected to impact or involve any potential environmental liability for the project site. The second site, Arco #5569, is approximately 2,000 feet from the project site and used to be a Les Schwab Tire facility. The Arco #5569 has not reported any leaks and is not currently expected to impact the proposed project. These facilities are not expected to adversely impact the proposed project site.

Based on the results of the above assessment Kleinfelder prepared a Phase II report on January 16, 2006. The report included sampling to evaluate the organochlorine pesticides, the EBMUDMA and soils in the southwest corner of the site associated with the Southern Pacific Railroad. A total of ten soil samples from seven bores were collected on the project site.

No organochlorine pesticides, included in the EPA 8081A were detected in any of the seven shallow soil samples collected on the site. No additional sampling or analysis of pesticides is warranted at this time. Sample B7 collected from a location in the proximity to the northern portion of the site boundary passed the Abbreviated Toxicity Screen Bioassay.

Eleven of the 17 CAM 17 metals were detected in the shallow soil samples located in proximity to the Mokelumne Aqueduct and in the southwest corner of the site, in proximity to the Southern Pacific Railroad. The results of the RCI Panel and the Abbreviated Toxicity Screen Bioassay did not indicate the presence of significance levels of hazardous material.

The proposed project would not involve any uses that would result in the use of hazardous materials or generation of hazardous wastes.

Level of Significance: Potentially significant.

Mitigation Measures:

1. If any subsurface structures are encountered during site development or excavation on site care should be exercised in determining whether or not the subsurface structures contain asbestos. If identified as asbestos containing material these items shall be disposed of in accordance with local, state and federal laws and regulations.

2. The owners, developers and/or successors shall remove any existing on-site debris piping, septic systems and wells.

3. The ODS will abandon all septic systems, piping and wells in accordance with local regulations.

4. The owners, developers and/or successors shall inspect the ground surface during the debris removal process for any soil staining or other evidence of contamination. Contaminated soil shall be removed and disposed in accordance with applicable local state, and federal regulations.

Significance After Mitigation: Less than significant

Implementation: The owners, developers and/or successors-in-interest will be responsible for the removal of on-site debris and abandonment of septic systems, wells and piping.

Monitoring: The Public Works Department, Community Development Department, Building Division and SJCEHD will be responsible for oversight of investigation and cleanup activities, as required.

B. HYDROLOGY AND WATER QUALITY: Would the project:

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigation Incorporation</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Violate any water quality standards or waste discharge requirements?</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Substantially deplete groundwater supplies or interfere substantially with groundwater recharge, resulting in a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level that would not support existing land uses or planned uses for which permits have been granted)?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
c. Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner that would result in substantial erosion or sitation onsite or offsite?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

d. Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding onsite or offsite?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

e. Create or contribute runoff water that would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted runoff?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

f. Otherwise substantially degrade water quality?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

g. Place housing within a 100-year flood hazard area, as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

h. Place within a 100-year flood hazard area structures that would impede or redirect flood flows?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

i. Expose people or structures to a significant risk of loss, injury, or death involving flooding, including flooding as a result of the failure of a levee or dam?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

j. Contribute to inundation by seiche, tsunami, or mudflow?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION:

There are no existing water resources on the project site. The EBMUD pipeline system is located adjacent to the north boundary of the project site, however, it is fully contained underground. The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map locates the proposed project in Zone X, which is considered an "Other Flood Area" that would include areas of 500-year flooding; areas of 100-year flood with average depths of less than one foot or with drainage areas less than one square mile; and areas protected by levees from 100-year flood (FEMA #0803020010 D, April 2, 2002). The project site is not subject to inundation by seiche, tsunami, or mudflow.

Project site drainage will be altered through standard site grading procedures and directed into the City’s storm drainage system. Sufficient drainage capacity exists within this system to serve the project, as discussed in Section 16, Utilities and Service Systems. The proposed project would involve no direct or indirect effects on surface waters other than the generation of urban runoff, which would send contaminants into the City’s storm drainage system.

The City of Stockton Storm Water Management and Discharge Control Ordinance (July 1, 1997) includes regulations that establish local oversight of the state general permit system and more effective control of storm water quality impacts. The Stockton Municipal Code requires projects greater than one acre to implement construction Best Management Practices from October 15 through April 15 and comply with the ordinance during the remainder of the year. A Storm Water Pollution Prevention Plan must also be submitted to the Municipal Utilities Department that includes both construction stage and permanent storm water pollution prevention practices. Compliance with applicable state and local National Pollutant Discharge Elimination System (NPDES) requirements and the ordinance would avoid significant water quality impacts of project construction.

The proposed project would be subject to state and local National Pollutant Discharge Elimination System (NPDES) requirements including the City of Stockton Storm Water Management and Discharge Control Ordinance and the implementation of Best Management Practices required by the City’s Storm Water Quality Control Criteria Plan. Implementation of these practices would be sufficient to reduce any potential effects of the project on water quality to less than significant.
Impacts on Ground Water

Other than incremental increases in groundwater withdrawal associated with increased urban use, the project would have no substantial effect on groundwater. The project does not require preparation of a Water Supply Assessment under SB 610/221. The hydrologic impacts would be less than significant.

Level Of Significance: Potentially significant

Mitigation Measures:

1. The owners, developers and/or successors-in-interest shall demonstrate compliance with City Code Sections 7-859, 7-859.1 and 7-859.2 to the Municipal Utilities Department to insure that sufficient post-construction storm water pollution prevention practices have been incorporated into the project design.

2. The owners, developers and/or successors-in-interest shall submit a Storm Water Pollution Prevention Plan to the Municipal Utilities Department that includes both construction stage and permanent storm water pollution prevention practices. This Plan must be developed during the project design phase and submitted and approved prior to the start of construction.

3. As of November 25, 2003, project improvement plans must comply with the Stormwater Quality Control Criteria Plan, as outlined in the city’s Phase 1 Stormwater NPDES Permit issued by the California Water Quality Control Board, Central Valley Region (Order No R5-2002-0181).

4. The owners, developers and/or successors-in-interest must establish a maintenance entity acceptable to the City to provide funding for the operation, maintenance and replacement costs of the storm water best management practices.

Significance After Mitigation: Less than significant.

Implementation: The property owners, developers and/or successors-in-interest will be responsible for compliance with applicable City codes and the Storm Water Quality Control Criteria Plan, and for preparation and submittal of the SWPPP.

Monitoring: The Municipal Utilities Department will be responsible for assessing project compliance with City codes and review and approval of the SWPPP prior to the issuance of a Building Permit.

9. LAND USE AND PLANNING — Would the project:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Physically divide an established community?</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, a general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Conflict with any applicable habitat conservation plan or natural community conservation plan?</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>d. Result in land use/operational conflicts between existing and proposed on-site or off-site land uses?</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

DISCUSSION:

The proposed project is located in an urbanizing area of northeast Stockton. The project site is currently vacant with the exception of the private Auto Center Circle roadway. Land uses north and east of the project site are car dealerships. Single-family residential neighborhoods are located south and west of the proposed site. Existing land uses immediately surrounding the site are as follows:

North: East Bay Municipal Utility District pipeline right-of-way, auto dealership
East: Auto dealership, undeveloped land
South: Single-family residential neighborhood
West: UPRR, single and multi-family neighborhoods

The project site is located within the Planning Area of the Stockton General Plan, within the Plan's designated Urban Service Boundary and within the existing City limits. The site is currently designated Commercial; the proposed project includes a General Plan amendment for redesignation of the proposed site to Low-Medium Residential. Surrounding designations are Low-Medium Density Residential to the south and west, lands north and east are designated Commercial. The project site, as well as lands to the north and east, are currently zoned by the City of Stockton Zoning Code as CA (Commercial Auto District). All 19.1 acres of the project site are proposed to be re-zoned to RM (Medium Density Residential). Lands to the south and west are zoned RL (Low/Medium Residential).

General Plan and Zoning Consistency

The proposed project involves the development of 19.1 acres for medium-density residential condominiums. The proposed project is not consistent with existing Stockton General Plan designations and zoning; however the project proposes to change the designation and zoning to RM (Medium Density Residential). The proposed residential designation and use of the site would be consistent with existing single and multi-family designations, zoning and land uses located to the south and east of the site.

Land Use Conflicts

The proposed project would involve potential for urban/commercial conflict between the proposed condominium subdivision and the existing auto dealerships of the north and east of the project. Potential compatibility issues are related to potential visual impacts, light and glare and noise associated with commercial auto operations. These issues are addressed in Section 4.1 Aesthetics and Section 4.11 Noise. The project site is separated from the auto dealerships by the 100-foot wide EBMUD right-of-way, and from both the auto dealerships and the adjoining commercial area by proposed 8-foot masonry walls, as required by the Stockton Development Code. These conditions and the mitigation measures identified in Section 4.1 and 4.11 would reduce aesthetic and noise impacts to less than significant and would avoid any significant incompatibility between residential land use and commercial development.

The project site is bordered on the remaining west side by UPRR, single and multi-family homes. The site will be divided from these uses by a masonry sound wall. A single-family neighborhood and an existing six-foot high wooden fence border the south side of the proposed project. There is no land use conflict with these developed areas.

Level of Significance: Potentially significant (As described in Sections 4.1 and 4.11)

Mitigation Measures: As described in Sections 4.1 and 4.11

10. MINERAL RESOURCES -- Would the project:

a. Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?

b. Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

DISCUSSION:

The proposed project site is located in an urbanized area. There are no known mineral resources associated with the project site. The Division of Mines and Geology Mineral Classification Map does not identify the project site as potentially containing known valuable mineral resources. The project site is located within MRZ-1, areas with "little likelihood of containing significant deposits" of economic minerals (Jensen and Silva, 1988). The proposed project would involve no known effect on mineral resources.

Level of Significance: Less than significant

Mitigation Measures: None required
11. **NOISE** -- Would the project:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION:

J.C. Brennan & Associates was retained to conduct a noise analysis for the project site (Appendix E). The project site is located west of Holman Road, east of the UP RR and south of the Stockton Auto Mall. The project proposes 222 medium-family residences, and approximately 6.80 acres of recreational open space. The proposed project would not involve the potential for generation of noise in excess of the adopted City standards; however, surrounding commercial uses, traffic from Holman Road and use of the UP RR would result in potential noise impacts that would exceed adopted standards.

Noise standards applicable for the project are established in the Stockton General Plan. The current Development Code, Table 3-7 shows that Ldn noise levels up to 85 dB Ldn are considered normally acceptable for exterior noise levels in residential developments, while interior noise levels should be maintained at 45 dB Ldn or below.

Holman Road Traffic Noise Impacts

The FHWA Highway Traffic Noise Prediction Model, Highway Noise (US Department of Transportation, December 1978) (FHWA-RD-77-108) was used to analyze Holman Road noise impacts on the project site. J.C. Brennan and Associates conducted noise level measurements and concurrent traffic counts of Holman Road at the site on October 24, 2005. Noise measurement results were compared to the FHWA model, and the FHWA Model was found to reasonably predict traffic noise levels. Table 1 below shows the predicted future traffic noise levels for the vicinity of the proposed project site without the reduction provided from the proposed eight-foot masonry wall located north of the project.

Holman Road Table 1

<table>
<thead>
<tr>
<th>Predicted Traffic Noise Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 2005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance to Noise Contours*</th>
<th>Predicted Ldn at Nearest Building Façade (375 feet)</th>
<th>Predicted Ldn at Nearest Outdoor Activity Area (625 feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 dB Ldn 65 dB Ldn 60 dB Ldn</td>
<td>Predicted Ldn</td>
<td>56 dB Ldn</td>
</tr>
<tr>
<td>Holman Road</td>
<td>Predicted distance</td>
<td>Predicted distance</td>
</tr>
<tr>
<td>79 ft 170 ft 396 ft</td>
<td>60 dB Ldn</td>
<td>60 dB Ldn</td>
</tr>
</tbody>
</table>

Predicted traffic noise at the nearest proposed structure, and in planned outdoor activity areas, would be below City noise standards. The project would not be subject to significant noise from this source.
Railroad Noise Impacts

On October 24, 2004 J.C. Brennan and Associates conducted a continuous noise level measurement of the UPRR. Approximately 30 trains operate per day along the track, with approximately 35% of the trains operating during nighttime hours (10:00 p.m. to 7:00 a.m.) and 65% of the trains operating during the daytime hours (7:00 a.m. to 10:00 p.m.). The railroad noise was measured at 100 dB at a distance of 75 feet from the railroad centerline.

The proposed nearest building facades would be set back approximately 500 feet from the railroad track centerline and predicted exterior noise levels at this distance are approximately 80 dB Ldn, which is below the City’s outdoor noise standard. Noise standards would be applied to the designated common outdoor areas of the proposed project and does not include individual outdoor patio areas of the project site. The closest outdoor activity area is located approximately 1800 feet from the railroad track centerline and predicted noise levels at this distance is approximately 51 dB Ldn. The project would not be subject to significant railroad noise.

Future Interior Noise Levels

Standard residential construction would result in an exterior to interior noise reduction of 25 dB with windows closed and approximately 15 dB with windows open. Interior traffic noise levels at unshielded first floor facades are predicted to comply with the City of Stockton noise standards of 45dB Ldn interior noise level criterion. Although second floor facades are predicted to be exposed to traffic noise levels approximately 2 to 3 dB higher, they too are predicted to comply with interior noise level criterion.

The nearest proposed building façade is approximately 500 feet from the centerline of the UPRR tracks. The predicted railroad noise level at the nearest building façade is 80 dB. Based upon the discussion above, it is expected that first and second floor facades will comply with the 45 dB Ldn interior noise level criterion.

Noise Impacts

The proposed project would involve minor contribution to long-term increases in ambient noise levels in the project area. Noise increases are anticipated from vehicle trips, and residential activities associated with the project. Residential activities are, however, typical of urban development areas and would not cause city noise standards to be exceeded. Vehicle trips generated from the project would not result in any significant noise increases.

The proposed project would be subject to minor noise impacts from existing auto commercial lots located to the north and east of the proposed project. The proposed project is located adjacent to the auto dealership “back lots” that are used for storage of new and used cars before entering the dealership’s main floor. These lots are subject to minor pedestrian and auto traffic and will not contribute a significant amount of noise within the proposed condominium site. Eight-foot masonry walls are proposed on the north and east boundary of the project site and will reduce any potential noise impacts to less than significant from adjacent uses.

Construction noise would temporarily elevate noise levels in the vicinity. When and if equipment is operating in the vicinity of existing residences to the north or other noise-sensitive land uses, noise could cause disturbance of residents near the project site, particularly if construction occurs in the evening or at night when people typically relax and sleep. This source of noise would be significant but generally short-term. Impacts would be reduced to less than significant with the mitigation measure listed below.

Level of Significance: Potentially significant

Mitigation Measures:

1. Temporary noise impacts resulting from project construction shall be minimized by restricting hours of operation by noise-generating equipment to 7:00 a.m. to 10:00 p.m. Monday through Friday, and to 7:00 a.m. to 6:00 p.m. on Saturday and Sunday when such equipment is to be used near noise-sensitive land uses, and by requiring residential type mufflers where applicable.

2. The owners, developers, and/or successors-in-interest shall be responsible for the installation and maintenance of an eight-foot high masonry wall along the north and east boundary of the site. The solid masonry wall shall be installed prior to the issuance of any residential building for the lots adjacent to the above-noted boundaries of the subdivision.

Implementation: The owners, developers, and/or successors-in-interest shall be responsible for design, installation and maintenance of the masonry wall, landscaping and irrigation systems within the site plan.

Monitoring: The Planning and Building Divisions of the Community Development Department, and the Public Works Department will be responsible for ensuring that noise mitigation measures have been incorporated in improvement or building plans and are observed during construction.
12. **POPULATION AND HOUSING** -- Would the project:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Implemented</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Induce substantial population growth in an area, either directly (e.g., by proposing new homes and businesses) or indirectly (e.g., through extension of roads or other infrastructure)?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Displace a substantial number of existing housing units, necessitating the construction of replacement housing elsewhere?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Displace a substantial number of people, necessitating the construction of replacement housing elsewhere?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION:

The January 2006 population of the City of Stockton was 279,513 (Department of Finance and U.S. Census Bureau).

The project is located in an urbanizing area of the City of Stockton, and is located adjacent to an existing residential development. The 19.1-acre proposed project site is vacant land historically used for farming but approved for commercial use. The project area is designated Commercial by the Stockton General Plan and is zoned Commercial Auto District.

Project Impacts on Population and Housing

The proposed project would result in the development of 222 medium-family residences. The project at buildout would result in a maximum potential population increase of about 897 people, based on a maximum of 222 condominiums, at the rate of 3.14 people per household. The project would add to the supply of housing and future population of Stockton but would not result in any significant impact to overall projected population of the City. Population increases associated with development of the project site and other infill sites have been accounted for in the Stockton General Plan.

The project would result in the construction of 222 medium-family homes, an addition to the City's existing housing stock that would be considered beneficial. The project would not involve any displacement of housing; the project site is vacant. The proposed project is well within the maximum housing density allowed by the Stockton General Plan.

Project Impacts on population and housing are considered less than significant.

- **Level of Significance:** Less than significant
- **Mitigation Measures:** None required

13. **PUBLIC SERVICES** -- Would the project:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Implemented</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities or a need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the following public services:</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Fire protection?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Police protection?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Schools?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(4) Parks?

(5) Other public facilities?

<table>
<thead>
<tr>
<th></th>
<th>✓</th>
<th></th>
</tr>
</thead>
</table>

DISCUSSION:

Fire Protection

The Stockton Fire Department provides fire protection services for the project area. The Fire Department has twelve stations located throughout the greater Stockton metropolitan area. The closest station to serve the project site is Engine Company 13, located at 8891 Bergamot Ct. It is equipped with one fire engine, four fire fighters and two paramedics in a 24-hour time period. The response time to the project site would be approximately four minutes. Engine Company 11 is located at 1211 E. Swain Road and would provide secondary response to a fire located at the project site.

Development of the proposed project would involve a minor addition to the responsibilities to the Stockton Fire Department. The project would have two emergency vehicle entry and access points as required by the Stockton Fire Department. The Stockton Fire Department does not anticipate any problems serving the proposed project site, and accessibility is adequate. The proposed building structures do not involve any particular fire protection concerns. The project must conform to California Fire Code’s standard regulations regarding placement of fire hydrants, adequacy of water supply to the site, and emergency access.

Police Protection

Law enforcement services for the project site are the responsibility of the Stockton Police Department (SPD). It is SPD’s policy to respond to all emergency calls within a three to five minute time period. Currently, staffing levels in the City of Stockton are determined by the City Council in consultation with the City Manager and Chief of Police. Currently there are no adopted service levels for the SPD, however, the police department is aware that as population increases a higher level of service may be required.

Project construction would, through the location of construction materials and equipment on the unoccupied site, involve new crime opportunities during the construction period. These can be minimized by construction site security, addressed in mitigation measures below.

Crime opportunities within areas of new development can be minimized by proper project design. Adequate emergency access onto the project site would be essential for responding to calls for service. These issues are addressed by the mitigation measures below.

Schools

The proposed project is located within Stockton Unified School District (SUSD). The nearest public schools to the site are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Bush Elementary (K through 8)</th>
<th>Chavez</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Development of the project site will lead to the generation of additional student population. Student generation associated with the project, based on the 222 proposed medium-family residential units, would amount to 156 students at a rate of 0.71 students per residence. The SUSD school system is overcrowded; however, SUSD has confirmed that sufficient capacity exists within the school system to accommodate project-related student generation.

To assist in meeting school construction costs, the SUSD collects developer fees in accordance with state law. The project will contribute to these fees in conjunction with building permit issuance. Collection of these fees will be sufficient to reduce potential schools impacts to less than significant.

Parks

Public parks and recreation facilities in the vicinity are provided by the City of Stockton. Valverde Park and Penella Park are both located approximately 1.5 miles from the proposed project and are equipped with playground equipment and picnic tables. The proposed project would contribute to an additional minor use of these parks; however, the majority of all recreational needs is expected to be met on-site for condominium residences.

The proposed project includes a total of 6.80 acres of open space and planned recreational uses. A full size basketball court would be constructed in the western corner of the property, a tot lot with grass and other landscaping would be located approximately in the
middle of the site, and a BBQ picnic area is proposed to be located in the southeastern portion of the project. A pool would also be located in the central portion of the proposed project site for residential use.

A 12-foot Class 1 bike/pedestrian path is proposed adjacent to the north project boundary along the EBMUD easement. Public access to the bike/pedestrian path would be provided north east of the project site at Holman Road.

Maintenance of Facilities, Including Roads

The proposed project would not result in any increase in facilities and maintenance requirements for roads. The portion of Auto Center Circle located within the project site would be abandoned. New private streets would be constructed to the typical average private street of 30 feet and maintained by the owner(s) of the project. New traffic on existing area roadways would be limited primarily to passenger vehicles and light trucks. There would be no substantial near-term increase in heavy vehicle loading.

Mitigation Measures:

1. The ODS shall pay required Public Facility Fees toward construction of new fire stations and related facilities prior to issuance of construction permits.

2. The ODS shall incorporate access, water supply and other fire suppression and emergency access/response needs in the proposed project design. Said designs shall be developed in consultation with the Fire, Police and Public Works Departments, and shall address such items as the location and design of streets and cul-de-sacs, residential numbering, mapping and other measures deemed necessary to permit access of emergency vehicles and firefighting equipment, minimize response times and provide adequate evacuation routes.

3. The ODS shall install fire hydrants and water distribution facilities which will provide fire flows which are adequate to support the City's existing ISO rating and which conform to adopted Building Code Fire Safety Standards, for all of the uses proposed within the project area.

4. The ODS shall pay Public Facility Fees to defray capital facilities costs associated with expanding law enforcement services.

5. The ODS shall fence and monitor contractors' storage yards during the construction phases of the project to prevent theft and vandalism, and to reduce calls for assistance from the Police Department.

6. The ODS shall ensure that appliances such as stoves, microwaves, refrigerators, etc., are not installed until the day a new owner completes the final walkthrough of the residence. If installed earlier, the residence must remain securely locked after hours and on weekends/holidays.

7. The ODS shall ensure that during construction, a licensed, uniformed security guard must be present during the evening hours (Monday through Friday), and 24 hours per day on weekends and holidays when the developer is not on site.

8. The ODS must fence the entire project site so that it is inaccessible to the public after hours and on weekend and holidays until residents begin occupying the new homes. The fence shall be maintained as needed during the project.

9. The ODS shall provide night lighting throughout the night, every night, so that it clearly illuminates the majority of the project site and the entire street within the project area.

10. The ODS shall ensure that the entrance/exit gate (must be Knox-Box compatible), as well as perimeter walls be built and operational prior to the start of construction.

11. The ODS will be responsible for providing a post-construction video surveillance system that covers the area inside the condominium project or at a minimum surveillance covering the entrance/exit point.

12. The owners, developers and/or successors-in-interest shall pay adopted developer fees toward construction of new schools prior to issuance of construction permits in accordance with the rate schedule established by SUSD.

13. The owners, developers and/or successors-in-interest shall coordinate with SUSD as required to assure adequate school facilities will be available concurrently with the project-related need for such facilities consistent with General Plan Public Facilities Goal 2, Policy 7, 8 and 9.

14. The owners, developers and/or successors-in-interest shall be responsible for construction of a 12-foot Class 1 bike/pedestrian path along the East Bay Municipal Utility District adjacent to the project site, unless it is opposed by the
surrounding land uses. If the bike/pedestrian path is not constructed, the ODS shall be responsible for their proportionate share of the cost of development of bike paths within the City of Stockton.

Significance After Mitigation: Less than significant

Implementation: The owners, developers and/or successors-in-interest will be responsible for payment of fees consultation with fire and police agencies and for provision of construction yard security.

Monitoring: The Community Development Department will verify the consultation with fire and police agencies. The Community Development Department - Building Division will verify that fees have been collected in conjunction with building permit issuance.

14. **RECREATION** — Would the project:

 a. Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

 b. Include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?

DISCUSSION:

Recreational facilities have been addressed under Section 13 Public Services.

15. **TRANSPORTATION/TRAFFIC** — Would the project:

 a. Cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in the number of vehicle trips, the volume-to-capacity ratio on roads, or congestion at intersections)?

 b. Cause, either individually or cumulatively, exceedence of a level-of-service standard established by the county congestion management agency for designated roads or highways?

 c. Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

 d. Substantially increase hazards because of a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

 e. Result in inadequate emergency access?

 f. Result in inadequate parking capacity?

 g. Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?
DISCUSSION:

Wood Rodgers conducted a detailed traffic analysis for the proposed project in April 2006. The analysis documented existing traffic conditions in the project area and considered the potential traffic impacts of the project under three baseline conditions. The baseline conditions included 1) Existing Plus Approved Projects (EPAP), which forecasts traffic conditions with the buildup of all approved projects in the project area; 2) Cumulative (Year 2025) conditions, which addresses the buildup of all potential development allowed under the City's existing general plan, and 3) Cumulative (Year 2035) conditions, which addresses the buildup of land use designations described in the City's proposed General Plan Update 2035. This section summarizes the Wood Rodgers study; a copy of the study is shown in Appendix F.

Major roadways in the vicinity of the project are State Route 99 (SR 99), Hammer Lane, Holman Road, Auto Center Circle (North) and Auto Center Circle (South). The proposed project is located south of Hammer Way and west of Holman Road along Auto Center Circle (South). The proposed project would require access to and from Auto Center Circle (South) from Holman Road. Currently, the most traveled roadway in the vicinity of the project is Hammer Lane, which accommodates 33,180 daily vehicle trips between Holman Road and Maranatha Drive; this portion of Hammer Lane operates at Level of Service (LOS) A. Hammer Lane between Girardi Way and Holman Road accommodates 32,990 daily vehicle trips and operates at LOS A.

Under current conditions most roadways and intersections in the vicinity of the project site operate at acceptable conditions, although one intersection is operating below the acceptable LOS. This intersection, Holman Road and March Lane, operate at LOS D during the AM and PM peak hours. The Holman Road and March Lane intersection would operate at LOS C if the southbound approach is re-striped as southbound left, through-shared-right and a right turn lane. No other improvement measures are projected to become necessary under "existing" conditions.

Currently, Hammer Lane and SR 99 is open for traffic but is undergoing an interchange modification project which is under construction. The Hammer Lane intersections with West Frontage Road, SR 99 southbound ramps, SR 99 northbound ramps and the East Frontage Road were not analyzed.

The San Joaquin Regional Transit District (SJRTD) operates bus service in the City of Stockton, Routes 13 and Route 17. There is transit service along Holman Lane, Holman Road and Telestar Plaza roadway. There are currently bus stops on the west and east sides of Holman Road, near Holman Road / Auto Center Drive (S) / Telestar Plaza intersection. There are also bus stops along north and south sides of Hammer Lane, near Holman Road / Hammer Lane intersection.

Traffic Impacts Under Existing Plus Approved Projects (EPAP) Conditions

Under the EPAP baseline condition all roadways would operate at a level of LOS B or better, however, one intersection, Holman/March, is projected to operate at LOS F during AM and PM peak hours. Wood Rodgers analysis and results are described in detail in Appendix F. Mitigations to improve the impacted intersections to an acceptable LOS include:

- The installation of a second northbound left-turn on top of the southbound approach re-striping at the Holman Road/March Lane intersection.

With these improvements all intersections in the project area would operate at an acceptable LOS. All roadway sections in the project vicinity would operate at or above LOS D under EPAP conditions.

The proposed residential project is anticipated to generate 1,206 "new" average daily vehicle trips, 93 AM peak hour trips, and 110 PM peak hour trips. Under the existing Commercial-Auto zoning, however, the site could generate 6,595 "new" daily trips at an assumed 25% floor area coverage. The net change difference in potential trip generation associated with the proposed project is a decrease of approximately 5,729 "new" daily trips. In terms of peak hour trips, the project would result in a net potential decrease of 333 AM peak hour trips and 277 PM peak hour trips. It should be noted that the project would involve a reversal of trip directionality, because commercial auto zoning is a trip attractor, while residential uses are trip producers.

In order to simulate "EPAPs plus Project" conditions, the proposed project-generated traffic volumes were superimposed on top of the EPAP baseline traffic volumes. Under EPAP Plus Project, one intersection, Holman Road/March Lane projects to continue to operate at LOS E or worse during the AM and PM peak hours. The remaining intersections would continue to operate at LOS D or better during the AM and PM peak hours.

The proposed project would not result in a deterioration of level of service at the intersection impacted under EPAP baseline conditions. The project would result in slight increases in delay at these locations, but none of these increases would be more than five seconds. As a result, the project Impacts at the study intersections are considered less than significant under EPAP plus Project conditions per City of Stockton TIA guidelines. As discussed below, the project will be required to contribute Public Facilities Fees and pay a proportionate share of non-PFF improvement costs, which would mitigate the project's cumulative contribution to traffic impact.
Wood Rodgers also considered the proposed project's contribution to additional daily vehicle traffic on surrounding roadways. On all of the study segments, the projected LOS remains the same under EPAP baseline and EPAP Plus Project conditions; as a result, the project would result in a less than significant effect on roadway segments.

Traffic Impacts Under Cumulative Conditions

The Wood Rodgers study considered the potential traffic impacts of the project under two projected future cumulative conditions: 1) impacts with buildout of the City's existing general plan, and 2) impacts with buildout of the City's proposed General Plan Update 2025. These analyses, which had similar results, are discussed in detail in Appendix F.

The cumulative impact analyses considered certain major conceptual circulation improvements – the construction of March Lane Extension connecting east from the Holman Road/March Lane intersection to SR 99/West Frontage Road interchange, construction of the Maranatha Drive Extension connecting south from Maranatha Drive/Hammer lane intersection to March Lane roadway, and the construction of the Hammer Lane Extension east from the East Frontage Road/Hammer Lane intersection.

The analysis indicated that four intersections would operate at an unacceptable level as a result of buildout of the City's existing general plan. Wood Rodgers projected that the following intersection improvements would be needed under "Cumulative Base" conditions, above and beyond the recommended improvements under EPAP conditions.

- **Holman Road / March Lane** – Under "Cumulative Base (Year 2025)" traffic volume, lane geometrics and control, this signalized intersection is projected to operate at PM peak hour LOS "E" conditions. With the recommended improvement under "EPAP" conditions, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" or better operations under "Cumulative Base (Year 2025)" conditions.

- **Holman Road / Hammer Lane** – Under "Cumulative Base (Year 2025)" traffic volume, existing lane geometrics and control, this signalized intersection is projected to operate at PM peak hour LOS "E" conditions. It is recommended that the northbound right-turn be controlled with an overlap phasing. With the recommended improvement, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" or better operations under "Cumulative Base (Year 2025)" conditions.

- **Mariantha Drive / Hammer Lane** – Under "Cumulative Base (Year 2025)" traffic volume, EPAP lane geometrics and control, this signalized intersection is projected to operate at PM peak hour LOS "E" conditions. It is recommended that the northbound approach be re-striped as dual northbound left-turn, northbound through, and an overlap right-turn and the southbound approach be re-striped as southbound left, through, and a right turn lane. With the recommended improvement, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" or better operations under "Cumulative Base (Year 2025)" conditions.

- **SR 99 Southbound Ramps / West Frontage Road / Hammer Lane** – Under EPAP lane geometrics and control, this signalized intersection is projected to operate at "Cumulative Base (Year 2025)" LOS "E" conditions under PM peak hour traffic volumes. It is recommended that the northbound right-turn be controlled as an overlap phasing. With the recommended improvement, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" or better operations under "Cumulative Base (Year 2025)" conditions.

With implementation of the above mitigation measures, intersections and roadways surrounding the project site would operate at an acceptable LOS. Wood Rodgers indicated that the study roadway segments would operate at LOS C or better conditions, on a daily basis. None of the study roadway segments were projected to warrant any improvement above and beyond the assumed roadway system.

Projected Cumulative Base plus Project traffic volumes were derived by subtracting traffic generation associated with the current commercial auto zoning from the "cumulative base", and then adding the proposed project-generated trips. Under this scenario, the project would result in less potential traffic, reduced delays and fewer impacted intersections than under the Cumulative Base scenario. None of the study intersections are projected to warrant any mitigation above and beyond those recommended under Existing or EPAP conditions. The project would be expected to contribute its proportionate share of these improvements. The project would result also in fewer projected trips on study roadways but no change in level of service. Cumulative Base Plus Project roadway operations would not require any additional mitigation measures.

Wood Rodgers also analyzed traffic impacts under the Cumulative Base (Year 2035) in which traffic volumes were forecasted using the City's proposed General Plan Update 2035 traffic model; this analysis used year 2035 development assumptions within the project study area and vicinity. Similar to the existing general plan scenario, this scenario assumed baseline traffic from the project site would be generated by the proposed General Plan land use designation of Commercial.
Similar to the existing general plan baseline condition, the planned future March Lane, Hammer Lane and Maranatha Drive extension connections were assumed to be in place. The following improvements were projected to be needed under Cumulative (Year 2035) baseline conditions.

Hammer Lane between Girard Way and Holman Road — is projected to experience upwards of 72,230 ADT on a daily basis under Cumulative (Year 2035) baseline conditions, which would exceed the capacity of the intersections in this area. Wood Rodgers recommended that the City of Stockton study strategies that would help alleviate vehicular traffic demands along Hammer Lane in this vicinity.

Holman Road/March Lane
- Northbound approach — Dual left, two through and an overlap phased right-turn lane
- Southbound approach — Dual left, two through and an overlap phased right-turn lane
- Eastbound approach — Dual left, three through, and a shared through-right-turn lane
- Westbound approach — Dual left, four through, and a right-turn lane

With the recommended improvement, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" operations under "Cumulative (Year 2035) Base" conditions.

Holman Road / Hammer Lane — It is recommended that the City of Stockton study strategies such as parallel east-west capacity enhancements between West Lane and SR 99 corridor, enhanced public transit service along Hammer Lane, etc. With the recommended improvement, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" operations under "Cumulative (Year 2035) Base" conditions.

Maranatha Drive / Hammer Lane — Under "Cumulative Base (Year 2035)" traffic volume, Cumulative (Year 2025) lane geometrics and control, this signalized intersection is projected to operate at PM peak hour LOS "F" conditions. It is recommended that the eastbound approach be improves as dual left, four through, and a right-turn-lane. With the recommended improvement, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" or better operations under "Cumulative Base (Year 2025)" conditions.

SR 69 Southbound Ramps / West Frontage Road / Hammer Lane — Under Cumulative (Year 2025) lane geometrics and control, this signalized intersection is projected to operate at "Cumulative Base (Year 2035)" LOS "E" conditions under PM peak hour traffic volumes. With the recommended improvements under Cumulative (Year 2025) conditions, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" or better operations under "Cumulative Base (Year 2035)" conditions.

Wood Rodgers also considered roadway segment operations under the Cumulative (Year 2035) baseline condition; Hammer Lane between Girard Way and Holman Road is projected to experience upwards of 72,230 ADT under "Cumulative (Year 2035) Base," and operate at LOS "F." To sustain LOS "D," it is suggested that the City of Stockton study strategies to help alleviate the traffic along this section of Hammer Lane. No other improvements were projected to be necessary under "Cumulative (Year 2035) Base" conditions.

Cumulative (Year 2035) Plus Project conditions were projected by subtracting the commercial project trips from the baseline model and then adding the proposed project-generated trips. The proposed residential project would result in small decreases in delay but no significant change in level of service or increases in delay. None of the study intersections are projected to warrant any mitigation above and beyond those recommended for the EPAP or Cumulative baseline conditions.

Similarly, a the proposed project would reduced future average daily vehicle traffic on surrounding roadways, but the projected LOS would remain the same. None of the study roadway segments would have significant impacts or are projected to warrant any mitigation above and beyond the recommended "Cumulative (Year 2050) Base" roadway improvements (non-project-related) under "Cumulative (Year 2050) Base plus Project" conditions.

The City of Stockton has adopted the Public Facilities Street Improvement Fees to finance street improvements required to mitigate the impacts of new development. If off-site intersection and roadway segment improvements are currently included in the calculations for a Public Facilities Street Improvement Fee, the payment of the current Public Facilities Fee constitutes the developer's proportionate share of participation for improvements. For improvements not included in the Public Facilities Fee calculation (including interim street improvements), the owners, developers and/or successors-in-interest will be responsible for the proportionate share, based on traffic loadings, for these improvements. However, the owners, developers, and/or successors-in-interest will be required to install identified improvements if the development triggers the need for the improvement. Further, the Public Facilities Fee does not preclude the owners, developers, and/or successors-in-interest's responsibility to provide public improvements immediately adjacent to the project as required by the City's Public Improvement Ordinance. In this case, the developer shall be responsible for the design and construction of the identified improvements and may be eligible for credit/reimbursement pursuant to the City of Stockton Public Facilities Fee Administrative Guidelines.
Proportionate share is determined and paid prior to recordation of the Final Map. If improvements are required within the project boundaries, the owners, developers, and/or successors-in-interest will be responsible for the costs associated with the design and construction, and the implementation of those required improvements.

Level Of Significance: Potentially significant

Mitigation Measures:

1. The owners, developers and/or successors-in-interest shall be responsible for payment of required Public Facility Fees for transportation improvements

2. The owners, developers and/or successors-in-interest shall be responsible for their proportionate share of costs for off-site improvements required under the cumulative scenario.

Significance After Mitigation: Less than significant

Implementation: The owners, developers, and/or successors-in-interest will be responsible for payment of proportionate share costs or design and construction of up-front improvements as required.

Monitoring: The Department of Public Works will be responsible for ensuring that proportionate share costs are paid, or alternatively that up-front improvements are designed and constructed as required.

16. **UTILITIES AND SERVICE SYSTEMS** -- Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>b. Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Have sufficient water supplies available to serve the project from existing entitlements and resources, or would new or expanded entitlements be needed?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Comply with federal, state, and local statutes and regulations related to solid waste?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION:

Sewer Services

Sewage treatment and collection services in the City of Stockton, including the project area, are provided by the City. Sewage treatment services are provided at the City’s Regional Wastewater Control Facility (RWCF) located on Navy Drive in Stockton. An existing 8-inch sewer line is located in Auto Center Circle, on the proposed project site.
The proposed project would involve increases in sewage generation as new condominiums are built and occupied. The proposed project would be served by the City's Collection System No. 3, which was designed to serve the project area. The City has indicated that there is sufficient capacity left in the system to accommodate the proposed project. Eight-inch sewer lines will be extended from Auto Center Circle and provide service to each of the proposed buildings. These lines have been sized to adequately serve the project.

Water Services

Water service in the project area is provided by the City of Stockton. An existing 12-inch water line is located in Auto Center Circle, on the proposed project site. An 18-inch water line is located immediately west of the project in the continuance of Auto Center Circle.

A 12-inch line will be extended from Auto Center Circle to serve all 37 proposed buildings. The City of Stockton has indicated sufficient water supplies are available to serve the project. This line has been sized to adequately serve the project, and no significant impacts on water services are anticipated. The project is not subject to SB 810/221 requirements.

Storm Drainage Services

Storm drainage services in the project area are provided by the City of Stockton. An existing 30-inch line is located in Auto Center Circle on the proposed project site and would serve the considered new development. Drainage flows from the project are directed east to Holman Road and then south to an existing 60-inch storm drain line.

Storm drainage for the Montage Condominium Project will be directed to inlet collection points through grading design. The storm drainage will then be conveyed underground via a traditional gravity system to an existing 30’ storm drain pipe located at the project entrance in Auto Center Circle. From there, the storm run-off travels through the existing conveyance system, sized for this project, to the existing Blossom Ranch pump station, and into the Calaveras River.

The proposed project would result in the construction of new impermeable surfaces that would increase runoff from the site. The proposed project would contribute additional flows to the existing City storm drainage system. Storm runoff flows from the proposed residential site would be less than predicted flows from approved commercial development of the site, which was assumed in storm drainage design for the project area. As a result, existing storm drainage lines would accommodate the additional storm water from the project site.

Storm runoff water quality is regulated by the federal Clean Water Act through the National Pollutant Discharge Elimination System (NPDES). The NPDES requirements are delegated to the California Regional Water Quality Control Boards (RWQCB); Stockton is in the jurisdiction of the Central Valley RWQCB. The state has adopted separate general permits to control storm water pollution from construction and industrial activities.

The City of Stockton Storm Water Management and Discharge Control Ordinance (July 1, 1997) includes regulations which establish local oversight of the state general permit system and more effective control of storm water quality impacts. The Stockton Municipal Code requires the filing of a NOI and preparation of a Storm Water Pollution Prevention Plan (SWPPP) for projects over five acres. Projects less than one acre require the implementation of construction Best Management Practices from October 15 through April 15 and compliance with the ordinance during the remainder of the year. Projects are also subject to the requirements of the City's Stormwater Quality Control Criteria Plan. Compliance with applicable state and local NPDES requirements and the grading ordinance would avoid significant water quality impacts of project construction. See mitigation below.

Gas and Electric Services

Pacific Gas and Electric Company (PG&E) currently provides natural gas and electric service to existing urban development in the project vicinity. Electrical and gas facilities are located Auto Center Circle. PG&E is a state-regulated utility that is obligated to extend electrical and gas service to existing and new development within its service area.

The proposed project will result in new demands for gas and electric service. Extension of gas and electrical infrastructure onto the project site would be required to serve new development. PG&E has indicated no concerns with extending service to the project site (Okamoto, pers. comm.). During the development process, the owners, developers and/or successors-in-interest must consult with PG&E or other service providers to ensure that infrastructure is available when needed and to prevent disturbance of potential existing buried utilities. This process prevents significant impacts, and no further mitigation would be required.

Telephone Services

SBC Pacific Bell is the telephone service provider in the existing project vicinity. Existing lines are located along local streets in the project vicinity. The proposed project would involve incidental new demands for telephone service. These demands can be met by existing facilities in the area.
Solid Waste

The City’s franchise hauler provides solid waste collection in Stockton. Solid waste is disposed of at existing private landfill facilities. There is no shortage of landfill facilities space within the City, and plans to expand existing private landfills have been approved. The proposed project would involve no substantial solid waste generation. There exists more than sufficient solid waste disposal capacity to meet the demands of anticipated growth within the City of Stockton. No concerns in this issue area are anticipated.

Level of Significance: Less than significant

Mitigation Measures:

1. The property owners, developers and/or successors-in-interest shall demonstrate compliance with the City Code Sections 7-859, 7-859.1, and 7-859.2 to the Municipal Utilities Department to ensure that sufficient post-construction stormwater pollution prevention practices consistent with the Stockton Stormwater Quality Criteria Plan have been incorporated into the project design.

2. The property owners, developers and/or successors-in-interest shall submit a Stormwater Pollution Prevention Plan to the Municipal Utilities Department that includes both construction stage and permanent stormwater pollution prevention practices. This Plan shall be developed during the project design phase and submitted and approved prior to the start of construction.

3. As of November 25, 2003, project improvements plans must comply with the Storm Water Quality Control Criteria Plan, as outlined in the City’s Phase 1 Storm water NPDES permit issued by the California Water Quality Control Board, Central Valley Region (Order No. R5-2002-0161)

4. As required by the Stormwater Quality Control Criteria Plan, the ODS must establish a maintenance entity acceptable to the City to provide funding for the operation, maintenance, and replacement costs of the storm water best management practices.

5. The property owners, developers and/or successors-in-interest shall conduct an engineering analysis acceptable to the Director of Municipal Utilities, which demonstrates that the water system improvements to be constructed within the City of Stockton water service area are sufficient to meet the following conditions:
 a. With a given system pressure of 45 psi at all future points of connection to the City water system and no wells on or within the subdivision, the internal water system improvements shall be sized to provide at least 40 psi pressure at an location during the period of peak hour demand (peak hour demands shall be calculated at 175% of maximum daily demands.)
 b. With a given system pressure of 45 psi at all future points of connection to the City water system and no wells on or within the subdivision, the internal water system improvements shall be sized to provide at least 20 psi pressure at any location during the period of maximum day demand (maximum day demands shall be calculated at 210% of the average day demands) combined with a fire flow of 3,000 gpm out of any fire hydrant in the subdivision.

6. A hydrologic and hydraulic analysis shall be performed to determine in the existing storm drainage infrastructure and Blossom Ranch Storm Pump Station is capable of accommodating the additional runoff generated from the proposed subdivision. If the existing capacity of the storm drainage infrastructure and pump station is inadequate to accept the additional runoff, the property owner, developer and/or successors-in-interest shall make all necessary improvements as required by the Stockton Municipal Code. Building permits shall not be approved until storm drainage improvements are completed.

Significance After Mitigation: Less than significant

Implementation: The owners, developers and/or successors-in-interest will be responsible for design and construction of project utility improvements, and construction of stormwater system improvements. The property owners will provide an engineering analysis to the Director of Municipal Utilities that demonstrates that water improvements are sufficient within the City of Stockton.

Monitoring: The Public Works Department and Municipal Utilities Department will be responsible for review and approval of project utility improvement plans.
17. **Other Issue(s) — Would the project:**

a. Result in, contribute to, or substantially affect other environmental issue(s)? If so, specify below and evaluate:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

DISCUSSION:

No other issues have been identified.

18. **Mandatory Findings of Significance:**

a. Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Does the project have impacts that are individually limited but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

DISCUSSION:

Finding (a) is checked as "Potentially Significant Unless Mitigated" on the basis of potential biological and cultural resources impacts described in Section 5. These impacts would be reduced to less than significant with mitigation measures identified in those sections.

The project would contribute to significant cumulative impacts of urban development in Stockton, as described in the Stockton General Plan and EIR. The project would not, however, involve any significant effects (with mitigation) or cumulatively considerable contributions to cumulatively significant impacts in any environmental issue area. Other than the environmental effects reviewed in the above narrative, the proposed project would not involve any other potential adverse effects on human beings, either directly or indirectly.

D. **Earlier Analysis (Completed by Lead Agency or Authorized Consultant):**

Earlier analyses may be used where, pursuant to tiering, program EIR, or other CEQA process, one or more effects have been adequately analyzed in an earlier EIR or Initial Study/Negative Declaration (Section 15063(c)(3)(d) of the State CEQA Guidelines). The previously-certified or adopted environmental document(s) and any applicable adopted mitigation measures, CEQA "findings", Statements of Overriding Considerations, and mitigation monitoring/reporting programs are incorporated by reference, as cited below, and discussed on attached sheet(s) to identify the following:

(a) Earlier Analysis Used -- Identify earlier analyses that adequately address project impacts and that are available for review at the City Of Stockton Community Development Department, Planning Division, 345 N. El Dorado Street, Stockton CA:

 Final EIR File No.: 4-88

 Title: **DRAFT EIR, CITY OF STOCKTON GENERAL PLAN REVISION AND INFRASTRUCTURE/PUBLIC FACILITIES MASTER PLANS**
State Clearinghouse No.: 88072506

(b) Impacts Adequately Addressed - Identify which effects from the above checklist (Section C) were within the scope of, and adequately analyzed in, an earlier document pursuant to applicable legal standards.

(c) Mitigation Measures - For effects that are "Less Than Significant With Mitigation Incorporated," specify whether any applicable mitigation measures are incorporated or refined from the earlier document to address site-specific conditions for the project.

CEQA Findings, Statements Of Overriding Considerations, And Mitigation Monitoring/Reporting Programs -- Indicate whether applicable previously adopted CEQA Findings, Overriding Considerations, and Mitigation Monitoring Provisions have been relied upon and incorporated into the proposed project, pursuant to Sections 15150 (incorporation by reference) and 15152 (Tiering) of the State CEQA Guidelines.

<table>
<thead>
<tr>
<th>ENVIRONMENTAL ISSUE:</th>
<th>Adequately Addressed by Earlier Analysis</th>
<th>Earlier Mitigation/Findings/ Not Monitoring Incorporated</th>
<th>Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AESTHETICS</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>2. AGRICULTURAL RESOURCES</td>
<td>√</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>3. AIR QUALITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. BIOLOGICAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. CULTURAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. GEOLOGY AND SOILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. HAZARDS AND HAZARDOUS MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. HYDROLOGY AND WATER QUALITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. LAND USE AND PLANNING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. MINERAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. NOISE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. POPULATION AND HOUSING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. PUBLIC SERVICES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. RECREATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. TRANSPORTATION/TRAFFIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. UTILITIES AND SERVICE SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. OTHER ISSUE(S)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. MANDATORY FINDINGS OF SIGNIFICANCE</td>
<td>√</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

E. ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED [Completed by Lead Agency or Authorized Consultant - Check (✓), as applicable):

The environmental factors checked below would potentially be affected by this project (i.e., the project would involve at least one impact that is a "Potentially Significant Impact"), as indicated in the preceding Checklist (Section C) and the Earlier Analysis (Section D):

✓ Aesthetics ✓ Agricultural Resources ✓ Air Quality
✓ Biological Resources ✓ Cultural Resources ✓ Geology/Soils
✓ Hazards and Hazardous Materials ✓ Hydrology/Water Quality Land Use/Planning
✓ Mineral Resources ✓ Noise Population/Housing
✓ Public Services ✓ Recreation ✓ Transportation/Traffic
✓ Utilities/Service Systems ✓ Mandatory Findings of Significance

F. REFERENCES CITED AND PERSONS CONSULTED (Completed by Lead Agency or Authorized Consultant):

REFERENCES CITED:

PERSONS CONSULTED:

Eck, Carl. Deputy Chief, Fire Marshal. Stockton Fire Department.

Hurban, Pam. Engineer. Stantec Engineers

Jensen, Sean. Principal, Genesis Society.

Marconi, Bob. Program Manager, Planning & Research Section, City of Stockton Police Department.

Moore, Diane. Principal, Moore Biological.

Podesto, Brent. Developer. KB Hornes

Piersak, Mike. Project Manager. Stantec Engineers

Authority: Public Resources Code Sections 21063 and 21067.
G. DETERMINATION [Completed by Lead Agency - Check (✓), as applicable]:

On the Basis Of This Initial Evaluation And On Substantial Evidence In Light Of The Whole Record Before The Lead Agency:

✓ I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

I find that although the proposed project could have a significant effect on the environment, however, there will not be a significant effect in this case because revisions to the project have been made by or agreed to by the project proponent (see attached Mitigation Agreement). A MITIGATED NEGATIVE DECLARATION or an Addendum to a MITIGATED NEGATIVE DECLARATION will be prepared.

I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT (EIR), SUBSEQUENT EIR, SUPPLEMENT to an EIR, or an Addendum to an EIR is required.

I find that the proposed project MAY have an impact on the environment that is "potentially significant" or "potentially significant unless mitigated" but at least one effect: (1) has been adequately analyzed in an earlier document pursuant to applicable legal standards and (2) has been addressed by mitigation measures based on the earlier analysis, as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier ENVIRONMENTAL IMPACT REPORT or MITIGATED NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier ENVIRONMENTAL IMPACT REPORT or MITIGATED NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the project, nothing further is required. Specifically, the environmental documentation for the proposed project is provided by the following document(s):

(Pursuant to the State and City Guidelines for Implementation of CEQA, the determination of the Community Development Director may be appealed to the City Planning Commission by submitting a written appeal with the applicable fee to the Community Development Department within ten (10) calendar days following this date of the determination.)

JAMES E. GLASER DIRECTOR
COMMUNITY DEVELOPMENT DEPARTMENT

By: [Signature] Jenny Llaw, Associate Planner

Date: 9-5-06
PROJECT SITE

SOURCE: US GEOGRAPHICAL SURVEY, LODI SOUTH, T2N, R6E

INSITE ENVIRONMENTAL, INC.

Figure 3
USGS MAP
APPENDIX A
MITIGATION AGREEMENT
CITY OF STOCKTON
MITIGATION AGREEMENT FOR PROPOSED PROJECT
[California Code of Regulations Titles 14, Sections 15040(c), 15064, and 15070 or 15126.4]

Lead Agency Address: City of Stockton
c/o Community Development Department/Planning Division
345 North El Dorado Street
Stockton, CA 95202-1997
Lead Agency Phone: (209) 937-8266

Project Title: Montage General Plan Amendment, Rezoning, Tentative Map and Planned Development Permit Residential Condominium Project

Property Owner: OUTO Quest, Inc., et al

Environmental Document: Proposed Mitigated Negative Declaration/ initial Study (IS10-06);
Draft Addendum/Initial Study for Mitigated Negative Declaration (IS______);
Notice of Preparation for Draft EIR/Initial Study (EIR______/IS______);
Draft Environmental Impact Report (EIR______);
Draft Supplement to EIR/Initial Study (SEIR______/IS______); or
Draft Addendum/Initial Study for Prior EIR (IS______)

Discretionary Application(s): GPA2-06, Z-2-06, TM9-06 and PD3-06

Project Description/Location: 1) General Plan amendment to amend a 19.1-acre site from Commercial to Low/Medium Density Residential; 2) a Rezoning to rezone the 19.1-acre site from CA (Commercial, Auto) to RM (Residential, Medium Density); 3) A Tentative Map to allow one lot subdivision for a residential condominium project; and 4) a Planned Development Permit to allow the development of a residential condominium for property located on the southeast side of East Bay Municipal Utility District Right-of-Way and west of Holman Road.

Legal Description of Property: Attached as Exhibit A (legal description includes metes and bounds (bearings and dimensions) or existing lots of record and corresponding map(s) for affected property).

MITIGATION AGREEMENT:

Pursuant to Section 15064 of the Guidelines for the Implementation of the California Environmental Quality Act (State CEQA Guidelines), the City of Stockton (lead agency) has prepared the above-noted draft environmental document and has independently determined that there is substantial evidence, in light of the whole record before it, that the proposed project may have one or more significant effects on the environment unless those effects are avoided or mitigated to an acceptable level. Accordingly, as the property owner, applicant, or the legal representative for the above-described project/subject site, I hereby agree to make revisions to the project description, plans, or proposals by incorporating feasible mitigation measures which will avoid or reduce some or all of the potentially significant adverse environmental effects to a point where, clearly, those effects will not be significant. The applicable mitigation measures are identified in the above-referenced environmental document, and/or in a separate document, which is incorporated by this reference and attached hereto as Exhibit B.

Based on the substantial evidence in the whole record before it, the City of Stockton has determined that the project, as revised by this Mitigation Agreement, will avoid or mitigate some or all of the potentially significant adverse environmental effects (as identified in Exhibit B) to a point where, clearly, those effects will not be significant. This determination and Agreement is based on, and subject to, the following findings, terms, and conditions, as applicable:
This Agreement is binding on the property owner(s), applicant(s), and on any successors-in-interest. Therefore, they are responsible for incorporating the identified feasible mitigation or avoidance measures, and/or equivalent or more effective measures, as revisions to the project and for implementing those measures in coordination with project design, construction, and operation.

This agreement has been executed prior to the distribution of the above-referenced environmental document for public review. However, additional mitigation measures may be required, and/or equivalent or more effective measures may be substituted, following the review of the above-referenced environmental document by the public, by responsible and trustee agencies, and/or by City of Stockton advisory and final decision-making bodies.

Pursuant to Section 15074 or 15091 of the State CEQA Guidelines, as applicable, any project approval shall be based upon, and subject to, the adoption of related "CEQA Findings" for each significant and potentially significant environmental effect identified in the above-referenced environmental document. Furthermore, in accordance with Guidelines Section 15097, this Mitigation Agreement, and any subsequently adopted mitigation/avoidance measures, will be subject to the provisions of a related "Mitigation Monitoring and Reporting Program" which must be adopted in conjunction with the approval of the above-noted discretionary application(s) for the proposed project. The Monitoring Program shall ensure that the applicable mitigation and avoidance measures are actually implemented.

Where applicable, in accordance with Section 15064 and/or 15152 of the State CEQA Guidelines, this Agreement incorporates any previously adopted measures designed to mitigate the significant adverse incremental or cumulatively considerable effects identified in a prior certified EIR or adopted Mitigated Negative Declaration (MND) for an earlier related project or project phase. Said measures are contained in Exhibit B, if applicable.

Pursuant to Section 15152(f) of the State CEQA Guidelines, if the above-referenced environmental document concludes that certain significant environmental effects were adequately addressed in a prior EIR for an earlier related project or project phase and that those effects remain unavoidable and/or infeasible to mitigate, then, the proposed project may rely on a Statement of Overriding Consideration which was previously adopted in accordance with Guidelines Section 15063. Said Statement of Overriding Consideration is contained in Exhibit B, if applicable.

Implementation of this fully executed Agreement shall be initiated following the date of its recordation at the San Joaquin County Recorder’s Office. The applicable recording fee (payable to San Joaquin County) shall be submitted to the City’s Community Development Department/Planning Division (CDD/PD) and the CDD/PD shall record the Agreement within five (5) calendar days after the City’s final approval of the above-noted discretionary application(s). Upon recordation of this Agreement, the owners, applicants, and/or successors-in-interest may submit applications for site plan approvals, building and/or grading permits, final subdivision or parcel maps, improvement plan approvals, or other ministerial approvals to facilitate project implementation.

In the event that all of the above-referenced discretionary application(s) for the project are withdrawn, denied, expired, terminated, or revoked, this Agreement shall be null and void.

IN WITNESS WHEREOF, the Community Development Director or his assign, representing the City of Stockton, and the applicant/owner or their legal representatives have executed this agreement on this ______ day of _________.

A notarized acknowledgement form must be attached for each of the signatures provided below (except City Attorney).

COMMUNITY DEVELOPMENT DEPARTMENT
CITY OF STOCKTON

By __________________________
Associate Planner: Jenny Law

PROPERTY OWNER(S) NAME AND ADDRESS:
(Type or Print):
QuoTo Quest, Inc.
McMurry, Alan Jr.
1182 Kemper Road
1046 41st Street
Auburn, CA 95603-9500
Sacramento, CA 95819

APPLICANT(S) NAME AND ADDRESS:
(Type or Print):
KB Homes, Brent Pedretto
2420 Del Paso Road, Suite 200
Sacramento, CA 95834

SIGNATURE OF OWNER/LEGAL AGENT:

APPROVED AS TO FORM:

OFFICE OF THE CITY ATTORNEY
CITY OF STOCKTON

By __________________________
Guy D. Petzold, Deputy City Attorney

SIGNATURE OF APPLICANT/LEGAL AGENT:
State of California
County of San Joaquin
On 9/1/06 before me personally appeared Janny Law

NAME(S) OF SIGNER(S)

☑ I personally known to me - OR - ☐ proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

WITNESS my hand and official seal:

SIGNATURE OF NOTARY

OPTIONAL

Though the data below is not required by law, it may prove valuable to persons relying on the document and could prevent fraudulent reattachment of this form.

CAPACITY CLAIMED BY SIGNER

☐ INDIVIDUAL ☑ CORPORATE OFFICER

______________________________ ________________________________
TITLE(S) TITLE OR TYPE OF DOCUMENT

☐ PARTNER(S) ☐ LIMITED ☐ GENERAL

☐ ATTORNEY-IN-FACT ☐ TRUSTEE(S) ☐ GUARDIAN/CONSERVATOR ☐ OTHER: _________________________

______________________________ ________________________________
SIGNER IS REPRESENTING: DATE OF DOCUMENT

NAME OF PERSON(S) OR ENTITY(IES)

______________________________ ________________________________
SIGNER(S) OTHER THAN NAMED ABOVE

::ODMAGRPWISE\COS.CDD.CDD_Library:50000.1
-3-
Revised 03-01-01
State of California
County of San Joaquin
On 09.06.2006 before me ________________,
NAME OF OFFICER
personally appeared _____________________.
NAME(S) OF SIGNER(S)

☐ personally known to me - OR - ☑ proved to me on the basis of satisfactory
evidence to be the person(s) whose name(s)
is/are subscribed to the within instrument and
acknowledged to me that he/she/they executed
the same in his/her/their authorized
capacity(ies), and that by his/her/their
signature(s) on the instrument the person(s), or
the entity upon behalf of which the person(s)
acted, executed the instrument.

WITNESS my hand and official seal.

SIGNATURE OF NOTARY

OPTIONAL

Though the data below is not required by law, it may prove valuable to persons relying on the document
and could prevent fraudulent reattachment of this form.

CAPACITY CLAIMED BY SIGNER

☐ INDIVIDUAL
☐ CORPORATE OFFICER

TITLE(S)

☐ PARTNER(S) ☐ LIMITED ☐ GENERAL

☐ ATTORNEY-IN-FACT
☐ TRUSTEE(S)
☐ GUARDIAN/CONSERVATOR
☐ OTHER: _______________________

__

DESCRIPTION OF ATTACHED DOCUMENT

__

TITLE OR TYPE OF DOCUMENT

__

NUMBER OF PAGES

__

DATE OF DOCUMENT

__

SIGNER IS REPRESENTING:
NAME OF PERSON(S) OR ENTITY(IES)

__

SIGNER(S) OTHER THAN NAMED ABOVE
State of California
County of San Joaquin

On 11-29-2006 before me, S. W. Aberglow

personal appearance B.J. Rodesto
NAME(S) OF SIGNER(S)

☒ personally known to me - OR - ☐
proven to me on the basis of satisfactory
evidence to be the person(s) whose name(s)
is/are subscribed to the within instrument and
acknowledged to me that he/she/they executed
the same in his/her/their authorized
capacity(ies), and that by his/her/their
signature(s) on the instrument the person(s), or
the entity upon behalf of which the person(s)
acted, executed the instrument.

WITNESS my hand and official seal.

OPTIONAL

Though the data below is not required by law, it may prove valuable to persons relying on the document
and could prevent fraudulent reattachment of this form.

CAPACITY CLAIMED BY SIGNER

☐ INDIVIDUAL
☐ CORPORATE OFFICER

TITLE(S)

☐ PARTNER(S) ☐ LIMITED
☐ GENERAL

☐ ATTORNEY-IN-FACT
☐ TRUSTEE(S)
☐ GUARDIAN/CONSERVATOR
☐ OTHER: _______________________

DESCRIPTION OF ATTACHED DOCUMENT

TITLE OR TYPE OF DOCUMENT

NUMBER OF PAGES

DATE OF DOCUMENT

SIGNER IS REPRESENTING:
NAME OF PERSON(S) OR ENTITY(IES)

SIGNER(S) OTHER THAN NAMED ABOVE
State of California
County of San Joaquin
On 09-06-2006 before me
personally appeared

☐ personally known to me - OR - ☑ proved to me on the basis of satisfactory
evidence to be the person(s) whose name(s)
is/are subscribed to the within instrument and
acknowledged to me that he/she/they executed
the same in his/her/their authorized
capacity(ies), and that by his/her/their
signature(s) on the instrument the person(s), or
the entity upon behalf of which the person(s)
acted, executed the instrument.

WITNESS my hand and official seal.

OPTIONAL

Though the data below is not required by law, it may prove valuable to persons relying on the document
and could prevent fraudulent reattachment of this form.

CAPACITY CLAIMED BY SIGNER

☐ INDIVIDUAL
☐ CORPORATE OFFICER

☐ PARTNER(S) ☐ LIMITED
☐ GENERAL

☐ ATTORNEY-IN-FACT
☐ TRUSTEE(S)
☐ GUARDIAN/CONSERVATOR
☐ OTHER: ___________________________

DESCRIPTION OF ATTACHED DOCUMENT

TITLE OR TYPE OF DOCUMENT

NUMBER OF PAGES

DATE OF DOCUMENT

SIGNER IS REPRESENTING:
NAME OF PERSON(S) OR ENTITY(IES)

SIGNER(S) OTHER THAN NAMED ABOVE
SUMMARY REPORT
(Tons/Year)

AREA SOURCE EMISSION ESTIMATES

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTALS</td>
<td>2.05</td>
<td>0.29</td>
<td>0.19</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

OPERATIONAL (VEHICLE) EMISSION ESTIMATES

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTALS (tpy, unmitigated)</td>
<td>3.05</td>
<td>3.93</td>
<td>35.23</td>
<td>0.02</td>
<td>1.61</td>
</tr>
<tr>
<td>TOTALS (tpy, mitigated)</td>
<td>3.00</td>
<td>3.46</td>
<td>34.55</td>
<td>0.02</td>
<td>1.58</td>
</tr>
</tbody>
</table>

WW OF AREA AND OPERATIONAL EMISSION ESTIMATES

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTALS (tpy, unmitigated)</td>
<td>5.10</td>
<td>3.62</td>
<td>35.42</td>
<td>0.02</td>
<td>1.61</td>
</tr>
</tbody>
</table>

Both Area and Operational Mitigation must be turned on to get a combined mitigated total.
DETAIL REPORT
(Tons/Year)

<table>
<thead>
<tr>
<th>Source</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>0.02</td>
<td>0.29</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Hearth</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.01</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Consumer Prodts</td>
<td>1.87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Architectural Coatings</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTALS (tpy, unmitigated)</td>
<td>2.05</td>
<td>0.29</td>
<td>0.19</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
UNMITIGATED OPERATIONAL EMISSIONS

Condo/townhouse general | ROG | NOx | CO | SO2 | PM10
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.05</td>
<td>3.53</td>
<td>35.23</td>
<td>0.02</td>
<td>1.61</td>
</tr>
</tbody>
</table>

TOTAL EMISSIONS (tons/yr) | 3.05| 3.53| 35.23| 0.02| 1.61

Includes correction for passby trips.
Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2007 Season: Annual

Summary of Land Uses:

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Acres</th>
<th>Trip Rate</th>
<th>No. Units</th>
<th>Total Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/townhouse general</td>
<td>19.10</td>
<td>7.49 trips/dwelling unit</td>
<td>210.00</td>
<td>1,572.90</td>
</tr>
</tbody>
</table>

Sum of Total Trips: 1,572.90
Total Vehicle Miles Traveled: 11,773.57

Vehicle Assumptions:

Asset Mix:

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Percent Type</th>
<th>Non-Catalyst</th>
<th>Catalyst</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Auto</td>
<td>51.86</td>
<td>1.60</td>
<td>97.80</td>
<td>0.60</td>
</tr>
<tr>
<td>Light Truck < 3,750 lbs</td>
<td>22.18</td>
<td>3.30</td>
<td>94.00</td>
<td>2.70</td>
</tr>
<tr>
<td>Light Truck 3,751-5,500</td>
<td>16.15</td>
<td>1.90</td>
<td>96.90</td>
<td>1.20</td>
</tr>
<tr>
<td>Medium Truck 5,751-8,500</td>
<td>6.25</td>
<td>1.40</td>
<td>95.80</td>
<td>2.80</td>
</tr>
<tr>
<td>Heavy-Heavy 8,501-10,000</td>
<td>0.17</td>
<td>0.00</td>
<td>91.80</td>
<td>18.20</td>
</tr>
<tr>
<td>Lite-Heavy 10,001-14,000</td>
<td>0.05</td>
<td>0.00</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>Med-Heavy 14,001-33,000</td>
<td>0.73</td>
<td>0.00</td>
<td>20.00</td>
<td>80.00</td>
</tr>
<tr>
<td>Heavy Heavy 33,001-60,000</td>
<td>0.59</td>
<td>0.00</td>
<td>13.10</td>
<td>89.90</td>
</tr>
<tr>
<td>Heavy Haul > 60,000 lbs</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Urban Bus</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>1.35</td>
<td>82.40</td>
<td>17.60</td>
<td>0.00</td>
</tr>
<tr>
<td>School Bus</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Work Home</td>
<td>0.61</td>
<td>8.30</td>
<td>93.30</td>
<td>8.40</td>
</tr>
</tbody>
</table>

Travel Conditions

<table>
<thead>
<tr>
<th></th>
<th>Residential</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home-Work Trip</td>
<td>Home-Shop</td>
<td>Home-Other</td>
</tr>
<tr>
<td>Trip Length (miles)</td>
<td>10.8</td>
<td>7.3</td>
</tr>
<tr>
<td>Rural Trip Length (miles)</td>
<td>16.8</td>
<td>7.1</td>
</tr>
<tr>
<td>Trip Speeds (mph)</td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td>% of Trips - Residential</td>
<td>32.9</td>
<td>18.0</td>
</tr>
</tbody>
</table>
MITIGATED OPERATIONAL EMISSIONS

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/townhouse general</td>
<td>3.00</td>
<td>3.46</td>
<td>34.55</td>
<td>0.02</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Vehicular Emissions (tons/yr)

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/townhouse general</td>
<td>3.00</td>
<td>3.46</td>
<td>34.55</td>
<td>0.02</td>
<td>1.58</td>
</tr>
</tbody>
</table>

PERCENTAGE REDUCTION %

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/townhouse general</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Includes correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2007
Season: Annual

Summary of Land Uses:

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Acres</th>
<th>Trip Rate</th>
<th>No. Units</th>
<th>Total Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/townhouse general</td>
<td>19.10</td>
<td>7.49 trips/dwelling unit</td>
<td>210.00</td>
<td>1,572.90</td>
</tr>
</tbody>
</table>

Sum of Total Trips: 1,572.90
Total Vehicle Miles Traveled: 11,773.57

Vehicle Assumptions:

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Percent Type</th>
<th>Non-Catalyst</th>
<th>Catalyst</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Auto</td>
<td>51.84%</td>
<td>1.80</td>
<td>97.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Light Truck < 3,750 lbs</td>
<td>22.18%</td>
<td>3.30</td>
<td>94.00</td>
<td>2.70</td>
</tr>
<tr>
<td>Light Truck 3,750-5,750</td>
<td>16.15%</td>
<td>1.90</td>
<td>96.90</td>
<td>1.20</td>
</tr>
<tr>
<td>Medium Truck 5,751-8,500</td>
<td>6.25%</td>
<td>1.40</td>
<td>95.80</td>
<td>2.80</td>
</tr>
<tr>
<td>Lite-Heavy 8,501-10,000</td>
<td>0.17%</td>
<td>0.00</td>
<td>81.80</td>
<td>18.20</td>
</tr>
<tr>
<td>Lite-Heavy 10,001-14,000</td>
<td>0.05%</td>
<td>0.00</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>Medium-Heavy 14,001-33,000</td>
<td>0.73%</td>
<td>0.00</td>
<td>20.00</td>
<td>80.00</td>
</tr>
<tr>
<td>Heavy-Heavy 33,001-60,000</td>
<td>0.59%</td>
<td>0.00</td>
<td>11.10</td>
<td>88.90</td>
</tr>
<tr>
<td>Large Haul > 60,000 lbs</td>
<td>0.00%</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Urban Bus</td>
<td>0.06%</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>1.35%</td>
<td>82.40</td>
<td>17.60</td>
<td>0.00</td>
</tr>
<tr>
<td>School Bus</td>
<td>0.02%</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Visitor Home</td>
<td>0.61%</td>
<td>8.30</td>
<td>93.30</td>
<td>8.40</td>
</tr>
</tbody>
</table>

Travel Conditions

<table>
<thead>
<tr>
<th></th>
<th>Residential</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Trip Length (miles)</td>
<td>10.8</td>
<td>7.3</td>
</tr>
<tr>
<td>Rural Trip Length (miles)</td>
<td>16.8</td>
<td>7.1</td>
</tr>
<tr>
<td>Trip Speeds (mph)</td>
<td>15.0</td>
<td>35.0</td>
</tr>
<tr>
<td>of Trips - Residential</td>
<td>32.9</td>
<td>49.1</td>
</tr>
</tbody>
</table>
MITIGATION OPTIONS SELECTED

Residential Mitigation Measures

Residential Mix of Uses Mitigation

NOTE this mitigation measure INCREASES Trips by 3%
Note that the above percent is applied to a baseline of 9.57 and that product is
subtracted from the Unmitigated Trips

guts Selected:
- A number of housing units within a 1/2 mile radius of the project, plus the
 number of residential units included in the project are 350.
The employment for the study area (within a 1/2 mile radius of the project) is 0.

Residential Local-Serving Retail Mitigation

Percent Reduction in Trips is 2% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is
subtracted from the Unmitigated Trips

guts Selected:
- The Presence of Local-Serving Retail checkbox was selected.

Residential Transit Service Mitigation

Percent Reduction in Trips is 0.11% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is
subtracted from the Unmitigated Trips

guts Selected:
- Number of Daily Weekday Buses Stopping Within 1/4 Mile of Site is 0
- Number of Daily Rail or Bus Rapid Transit Stops Within 1/2 Mile of Site is 5
The Number of Dedicated Daily Shuttle Trips is 0

Residential Pedestrian/Bicycle Friendliness Mitigation

Percent Reduction in Trips is 2.4% (calculated as a % of 9.57 trips/day)
Note that the above percent is applied to a baseline of 9.57 and that product is
subtracted from the Unmitigated Trips

guts Selected:
- Number of Intersections per Square Mile is 0
 - Percent of Streets with Sidewalks on One Side is 40%
The Percent of Streets with Sidewalks on Both Sides is 60%
The Percent of Arterials/Collectors with Bike Lanes or where Suitable,
 - Paralal Lanes Exist is 0%
Changes made to the default values for Land Use Trip Percentages

- Trip Rate and/or Acreage values for Condominium/townhouse general
 have changed from the defaults 6.9/13.13 to 7.49/19.1

Changes made to the default values for Area

- Wood stove percentage changed from 67 to 0.
- The natural gas fireplace percentage changed from 33 to 03.
- The no hearth options percentage changed from 0 to 17.
- The landscape year changed from 2005 to 2007.
- Residential Arch. Coatings R60 emission factor changed from 0.0105 to .00002.

Changes made to the default values for Operations

- Pass by trips option switch changed from off to on.
- Mitigation option switch changed from off to on.
- Light auto percentage changed from 55.2 to 51.84.
- Light truck <3750 lbs percentage changed from 15.1 to 22.10.
- Light truck 3751-5750 percentage changed from 16.1 to 16.15.
- Med truck 5751-8500 percentage changed from 7.1 to 5.85.
- Lite-heavy truck 8501-10000 percentage changed from 1.1 to 0.17.
- Lite-heavy truck 10001-14000 percentage changed from 0.4 to .05.
- Med-heavy truck 14001-33000 percentage changed from 1.0 to .73.
- Heavy-heavy truck 33001-60000 percentage changed from 0.9 to .5.
- Urban bus percentage changed from 0.1 to .06.
- Motorcycle percentage changed from 1.7 to 1.15.
- School bus percentage changed from 0.1 to .02.
- The motorhome percentage changed from 1.2 to .51.
- The operational emission year changed from 2005 to 2007.
- Paved road slt loading factor changed from 0.1 to .031.
- The Res and Non-Res Mix of Uses Mitigation changed from off to on.
- The Res and Non-Res Local-Serving Retail: Mitigation changed from off to on.
- The Res and Non-Res Transit Service Mitigation changed from off to on.
- The Res and Non-Res Fed/Bike Mitigation changed from off to on.
APPENDIX C
BIOLOGY STUDY
November 3, 2005

Mr. Brent Podesto
KB Home Central Valley
2420 Del Paso Road, Ste. 200
Sacramento, CA 95834

Subject: BASELINE BIOLOGICAL RESOURCES ASSESSMENT AT THE NIXON PROJECT SITE, STOCKTON, CALIFORNIA

Dear Brent:

Thank you for contracting with Moore Biological Consultants to conduct a baseline biological resources assessment of the subject property (Figures 1 and 2). The focus of our work was to conduct a site evaluation for wetlands and suitable habitat for or presence of sensitive species. This letter report details the methodology and results of our investigation.

Methods

Prior to the field survey, we conducted an updated search of California Department of Fish and Game’s (CDFG) California Natural Diversity Database (CNDDB, 2005). This information was used to identify wildlife and plant species that have been previously documented in the project vicinity or have the potential to occur based on suitable habitat and geographical distribution. The project site is located in the south central portion of the USGS 7.5-minute Lodi South topographic quadrangle. Therefore, the CNDDB search was conducted on just this quadrangle, which is an area encompassing approximately 70 square miles surrounding the site.

The field survey was conducted on October 25, 2005 and consisted of walking throughout the site making observations of current habitat conditions and noting surrounding land use, general habitat types, and plant and wildlife species. We
conducted a search for jurisdictional Waters of the U.S. (a term that includes wetlands) as defined by the U.S. Army Corps of Engineers (ACOE, 1987), sensitive species, and suitable habitat for sensitive species (e.g., elderberry shrubs, potential nest trees for Swainson's hawk).

Results

GENERAL SETTING: The project site is located in north Stockton, California (Figure 1). The site is within Section 13, Township 2 North, Range 6 East of the USGS 7.5-minute Lodi South topographic quadrangle (Figure 2). The site is fairly level from historical land leveling and farming practices. The site is at an elevation of approximately 25 feet above mean sea level. The site consists of fallow annual small grain and weed species with a few volunteer almonds along the fence-lines.

Surrounding land uses in this urbanized portion of San Joaquin County are primarily car dealerships and subdivisions (Figure 3). The site is dissected by Auto Center Circle which dead ends at the northern border of the site. The Mokelumne Aqueduct borders the site to the north; this section of the Mokelumne Aqueduct is piped underground. There is an auto mall north of the aqueduct, as well as along a portion of the northern boundary of the site. A subdivision bounds the site to the south and there is a small fallow field to the east of the site.

VEGETATION: The project site consists of fields that have been historically leveled and farmed in the past. The site is currently fallow and consists of various non-native annual small grain and weed species such as oats (Avena sp.), wheat (Triticale sp.), field mustard (Brassica rapa), soft chess brone (Bromus hordeaceus), common mallow (Malva neglecta), yellow star-thistle (Centaurea solstitialis), ryegrass (Lolium perenne), and foxtail barley (Hordeum murinum). Plant species documented within the project site are listed in Table 1.

Trees and shrubs within the project site consist primarily of volunteer almonds (Prunus sp.), Himalayan blackberry (Rubus discolor), and tree-of-heaven (Ailanthus altissima). No blue elderberry (Sambucus sp.) shrubs were observed within or adjacent to the project site.
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alianthus altissima</td>
<td>tree-of-heaven</td>
</tr>
<tr>
<td>Amaranthus albus</td>
<td>pigweed</td>
</tr>
<tr>
<td>Amsinckia intermedia</td>
<td>fiddleneck</td>
</tr>
<tr>
<td>Avena sp.</td>
<td>oat</td>
</tr>
<tr>
<td>Brassica nigra</td>
<td>black mustard</td>
</tr>
<tr>
<td>Brassica rapa</td>
<td>field mustard</td>
</tr>
<tr>
<td>Bromus diandrus</td>
<td>ripgut brome</td>
</tr>
<tr>
<td>Bromus hordeaceus</td>
<td>soft chess brome</td>
</tr>
<tr>
<td>Centaurea solstitialis</td>
<td>yellow star-thistle</td>
</tr>
<tr>
<td>Convolvulus arvens</td>
<td>morning glory</td>
</tr>
<tr>
<td>Cistum vulgare</td>
<td>bull thistle</td>
</tr>
<tr>
<td>Epilobium brachycarpum</td>
<td>willow weed</td>
</tr>
<tr>
<td>Eremocarpus setigerus</td>
<td>dovecweed</td>
</tr>
<tr>
<td>Erodium botrys</td>
<td>filaree</td>
</tr>
<tr>
<td>Helianthus annuus</td>
<td>common sunflower</td>
</tr>
<tr>
<td>Hemizonia pungens</td>
<td>common spikeweed</td>
</tr>
<tr>
<td>Holocarpha virgata</td>
<td>tarweeed</td>
</tr>
<tr>
<td>Hordeum murinum</td>
<td>foxtail barley</td>
</tr>
<tr>
<td>Hypochaeris glabra</td>
<td>smooth cats ear</td>
</tr>
<tr>
<td>Lactuca serfolia</td>
<td>prickly lettuce</td>
</tr>
<tr>
<td>Lolium perenne</td>
<td>perennial ryegrass</td>
</tr>
<tr>
<td>Malva neglecta</td>
<td>common mallow</td>
</tr>
<tr>
<td>Picris echinodes</td>
<td>bristy ox-tongue</td>
</tr>
<tr>
<td>Prunus dulcis</td>
<td>almond</td>
</tr>
<tr>
<td>Raphanus sativus</td>
<td>wild radish</td>
</tr>
<tr>
<td>Rubus discolor</td>
<td>Himalayan blackberry</td>
</tr>
<tr>
<td>Rumex crispus</td>
<td>curly dock</td>
</tr>
<tr>
<td>Rumex pulcher</td>
<td>fiddle dock</td>
</tr>
<tr>
<td>Salsola frugus</td>
<td>tumbleweed</td>
</tr>
<tr>
<td>Sorghum halepense</td>
<td>Johnson grass</td>
</tr>
<tr>
<td>Taenialtherum caput-medusae</td>
<td>Medusa head grass</td>
</tr>
<tr>
<td>Trichostema lanceolatum</td>
<td>vinegar weed</td>
</tr>
</tbody>
</table>
WILDLIFE: A limited number of wildlife species were observed during the field survey. Some of the more common birds observed included the yellow-billed magpie (Pica nuttallii), mourning dove (Zenaida macroura), house Finch (Carpodacus mexicanus), and California gull (Larus californicus). All of these are species commonly found in urban areas in the greater project vicinity.

There are no potential nest trees within the project site that are suitable for nesting raptors such as Swainson’s hawk (Buteo swainsoni). There were a few small volunteer almond trees within the site; it is considered likely a variety of songbirds, utilize the small on-site trees for each year. The project site provides potential raptor foraging habitat, however the fields are fairly small and surrounded by urban lands, use of the site by foraging raptors is expected to be limited.

A very limited variety of mammals common to semi-urban areas occur in the project site. No mammals were observed during the field survey, however ground squirrels (Spermophilus beecheyi), striped skunk (Mephitis mephitis), and opossum (Didelphis virginiana) are expected to occur at the site. A number of species of small rodents including mice (Mus musculus, Rattus norvegicus, and Peromyscus maniculatus) and voles (Microtus californicus) also likely occur.

Based on habitat types present, a limited number of reptiles and amphibians may use habitats within the project site. However, no reptiles or amphibians were observed during the recent survey. There is suitable habitat in the site for western fence lizard (Sceloporus occidentalis) and Pacific chorus frog (Pseudacris regilla).

WATERS OF THE U.S. AND WETLANDS: Waters of the U.S., including wetlands, are broadly defined under 33 Code of Federal Regulations (CFR) 328 to include navigable waterways, their tributaries, and adjacent wetlands. State and federal agencies regulate these habitats and Section 404 of the Clean Water Act requires that a permit be secured prior to the discharge of dredged or fill materials into any waters of the U.S., including wetlands. Both CDFG and ACOE have jurisdiction over modifications to riverbanks, lakes, stream channels and other wetland features.

Although definitions vary to some degree, wetlands are generally considered to be areas that are periodically or permanently inundated by surface or ground water, and support vegetation adapted to life in saturated soil. Jurisdictional wetlands are
vegetated areas that meet specific vegetation, soil, and hydrologic criteria defined by
the ACOE Wetlands Delineation Manual (ACOE, 1987). Waters of the U.S. are drainage
features or water bodies as described in 33 CFR 328.4. ACOE holds sole authority to
determine the jurisdictional status of waters of the U.S., including wetlands.

Jurisdictional wetlands and Waters of the U.S. include, but are not limited to, perennial
and intermittent creeks and drainages, lakes, seeps, and springs; emergent marshes;
riparian wetlands; and seasonal wetlands. Wetlands and Waters of the U.S. provide
critical habitat components, such as nest sites and a reliable source of water, for a wide
variety of wildlife species.

We observed no other potential waters of the U.S., including wetlands, at the project site
that appear to have any potential to fall under the jurisdiction of ACOE and/or CDFG.
Specifically, there are no stock ponds, irrigation ditches, vernal pools, seasonal
wetlands, or wetlands of any type within the project site.

SENSITIVE SPECIES: Based on the level of disturbance from past and ongoing farming
practices, the likelihood of occurrence of listed, candidate, and other sensitive species
in the project site is considered to be generally low. Table 2 provides a summary of the
listing status and habitat requirements of sensitive species, which have been
documented in the CNDDB in the greater project vicinity or for which there is potentially
suitable habitat in the greater project vicinity. This table also includes an assessment of
the likelihood of occurrence of each of these species within the project site. The
evaluation of the potential for occurrence of each species is based on the distribution
of regional occurrences (if any), habitat suitability, and field observations. A few
sensitive species of regional concern with the greatest potential of occurrence or for
which there is potential habitat at the site are further discussed in detail below.

SENSITIVE PLANTS: No sensitive plants were observed during the recent survey. Sensitive
plants found within the greater project vicinity generally occur in relatively undisturbed
areas and are largely found in vegetation communities not present within the project
site. Rare plants that occur within the greater project vicinity are found in habitats such
as marshes, swamps and riparian scrub, which are not found in or adjacent to the
project site. Mason's Illiciopsis (Illiciopsis masonii) is the only sensitive plant species
reported in the CNDDB (2005) in the search area (i.e., the Lodl South topographic

November 3, 2005
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Federal Status</th>
<th>State Status</th>
<th>CNPS List</th>
<th>Habitat</th>
<th>Potential for Occurrence in the Project Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mason's Iliaepsis</td>
<td>Iliaepsis masonii</td>
<td>None</td>
<td>Rare</td>
<td>1B</td>
<td>Freshwater and brackish marshes and swamps. Riparian scrub. Usually found associated with undercut banks in the Delta system. Blooms April – November.</td>
<td>Extremely low to none; There is no potential habitat for Mason's Iliaepsis within the project site. The nearest occurrence of this species is documented in the CNDD (2005) approximately 4 miles south west of the site.</td>
</tr>
<tr>
<td>WILDLIFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swainson's hawk</td>
<td>Buteo swainsoni</td>
<td>None</td>
<td>T</td>
<td>N/A</td>
<td>Nesting: large trees, usually within riparian corridors. Foraging: agricultural fields and annual grasslands.</td>
<td>Moderate to low; there is no suitable nesting habitat near the site and limited foraging habitat on-site. There are several occurrences of nesting Swainson's hawks in the area; the closest one is approximately 1 mile southwest of the site CNDD (2005).</td>
</tr>
<tr>
<td>Burrowing owl</td>
<td>Athene cunicularia</td>
<td>None</td>
<td>SC</td>
<td>N/A</td>
<td>Open, dry annual or perennial grasslands, deserts and scrublands characterized by low-growing vegetation.</td>
<td>Very low to none; there are no ground squirrel burrows within the project site. No burrowing owls or evidence of occupancy were found during the recent survey. Burrowing owls are documented in the CNDD (2005) along the Mokelumne Aqueduct, approximately 0.5 miles north of the project site.</td>
</tr>
<tr>
<td>Giant garter snake</td>
<td>Thamnophis gigas</td>
<td>T</td>
<td>T</td>
<td>N/A</td>
<td>Freshwater marsh and low gradient streams. Has adapted to drainage canals and irrigation ditches.</td>
<td>Extremely remote to none; No suitable habitat exists within the site for this species. Giant garter snakes have not been reported in the greater project vicinity for several decades; the nearest historical occurrence of this species is a 1976 observation from Pixley Slough approximately 5 miles northwest of the site. (CNDD, 2005).</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CNPS List</td>
<td>Habitat</td>
<td>Potential for Occurrence in the Project Site</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Vernal pool tadpole shrimp</td>
<td>Lepidurus packardi</td>
<td>E</td>
<td>None</td>
<td>N/A</td>
<td>Vernal pools</td>
<td>None; there are no vernal pools within the project site. The closest occurrence of vernal pool tadpole shrimp in the CNCDB (2005) is located approximately 8 miles north of the project site.</td>
</tr>
</tbody>
</table>

1. T = Threatened; E = Endangered.
2. T = Threatened; SC = State of California Species of Special Concern.
3. CNPS List 1B includes species that are rare, threatened, or endangered in California and elsewhere.
quadrangle). There is no suitable habitat onsite for Mason's illaeopsis on-site; this species is mostly known from habitats in the San Joaquin Delta, several miles west of the site.

SENSITIVE WILDLIFE: The potential for intensive use of habitats within the project site by sensitive wildlife species is generally considered low. Sensitive wildlife species that have been recorded in the greater project vicinity in the CNDDB (2005) include Swainson's hawk, burrowing owl (Athene cunicularia), vernal pool tadpole shrimp (Lepidurus packardi), and giant garter snake (Thamnophis gigas). Swainson's hawk and burrowing owl have at least a low potential to occur within the project site on more than a transitory or very occasional basis. These species could be adversely affected by site construction if they nested on or near the project site during construction and are discussed further below.

SWAINSON'S HAWK: The Swainson's hawk is a migratory hawk listed by the State of California as a Threatened species. The Migratory Bird Treaty Act and Fish and Game Code of California protect Swainson's hawks year-round, as well as their nests during the nesting season (March 1 through September 15). Swainson's hawk are found in the Central Valley primarily during their breeding season (March 1 through September 15), a population is known to winter in the San Joaquin Valley.

Swainson's hawks prefer nesting sites that provide sweeping views of nearby foraging grounds consisting of grasslands, irrigated pasture, hay, and wheat crops. Most Swainson's hawks are migratory, wintering in Mexico and breeding in California and elsewhere in the western United States. This raptor generally arrives in the Central Valley in mid-March, and begins courtship and nest construction immediately upon arrival at the breeding sites. The young fledge in early July, and most Swainson's hawks leave their breeding territories by late August.

While there are no suitable on-site trees for nesting raptors, trees in the greater project vicinity have been documented as nesting sites by Swainson's hawks during some years. Agricultural fields in the greater project vicinity, as well as those on the site, represent Swainson's hawk foraging habitat. The CNDDB (2005) contains several records of nesting Swainson's hawk in the greater project vicinity.
BURROWING OWL: The Migratory Bird Treaty Act and Fish and Game Code of California protect burrowing owls year-round, as well as their nests during the nesting season (February 1 through August 31). Burrowing owls are a year-long resident in a variety of grasslands as well as scrub lands that have a low density of trees and shrubs with low growing vegetation; burrowing owls that nest in the Central Valley may winter elsewhere.

The primary habitat requirement of the burrowing owl is small mammal burrows for nesting. The owl usually nests in abandoned ground squirrel burrows, although they have been known to dig their own burrows in softer soils. In urban areas, burrowing owls often utilize artificial burrows including pipes, culverts, and piles of concrete pieces. This semi-colonial owl breeds from March through August, and is most active while hunting during dawn and dusk. Burrowing owls are documented in the CNDDB (2005) along the Mokelumne Aqueduct, approximately 0.5 miles north of the project site.

There are no ground squirrels or ground squirrel burrows within the site. Despite these negative findings, there has been a documented occurrence of burrowing owls recorded approximately 0.5 miles north of the site. Burrowing owls could be adversely affected by on-site construction if they nest in burrows within or near the site. While the future use of the site by nesting burrowing owls is considered extremely low, it cannot be precluded with certainty at this point in time.

Conclusions and Recommendations

- The likelihood of occurrence of listed, candidate, and other sensitive plants within the site is considered extremely low to none.

- Development of the project site will result in a loss of Swainson's hawk foraging habitat, and will contribute to a cumulative loss of Open Space and associated biological resource values. Mitigation for the loss Open would be best accomplished through participation in the San Joaquin County Multi-species Habitat Conservation Plan (HCP).

- If the project participates in the HCP, standard Take Avoidance measures outlined in the HCP for nesting Swainson's hawks and burrowing owl should be undertaken. Otherwise, pre-construction
surveys for nesting Swainson's hawks within 0.25 miles of the project site and burrowing owls within 250 feet of the site should be conducted for construction activities between March 1 and September 15 (for hawks) and February 1 through August 31 (for owls). If active nests are found, a qualified biologist should determine the need (if any) for temporal restrictions on construction. These determination(s) should be made pursuant to criteria set forth by CDFG (1994) and/or CDFG (1995).

- The small on-site volunteer trees could be used by small protected migratory birds. Any trees that need to be removed to facilitate future development should be felled outside of the general bird nesting season (February 1 through August 31) or a nesting bird survey should be conducted immediately prior to tree removal. If active nests are found, tree felling should be delayed until the young have fledged.

- We observed no other outstanding wetlands, sensitive species, or biological issues of concern within the project site.

Thank you, again, for asking Moore Biological Consultants to assist with the project. Please feel free to call me at (209) 745-1159 with any questions.

Sincerely,

Diane S. Moore, M.S.
Principal Biologist
References and Literature Consulted

CDFG (California Department of Fish and Game). 1994. Staff Report regarding Mitigation for Impacts to Swainson’s Hawks (Buteo swainsoni) in the Central Valley of California. November.

CNDDDB (California Natural Diversity Database). 2004. California Department of Fish and Game’s Natural Heritage Program, Sacramento, California.

APPENDIX D
CULTURAL RESOURCES STUDY

Due to the sensitivity of cultural resource information, this study is only available to qualified reviewers at the Stockton Department of Community Development, 345 N. El Dorado Street, Stockton.
APPENDIX E
HAZARDS STUDY

A copy of this study has been submitted to the City separate from this document and is available for review at the Stockton Department of Community Development, 345 N. El Dorado Street, Stockton.
APPENDIX F
NOISE STUDY
Environmental Noise Analysis

Nixon Property

Stockton, CA

J.c. brennan & associates, Inc. Job # 2006-109

Prepared For:

KB Home
2420 Del Paso Road, Suite 200
Sacramento, CA 95834

Attn: Mr. Brent Podesto

Prepared By:

j.c. brennan & associates, Inc.

[Signature]

Jim Brennan
President
Member: Institute of Noise Control Engineering

November 28, 2005
INTRODUCTION

The proposed Nixon Property development is located west of Holman Road, east of the Union Pacific Railroad (UPRR), and south of the Stockton Auto Mall, in the City of Stockton, California. Traffic on Holman Road and UPRR train operations along the project site are considered to be a potentially significant noise source which may affect the project design.

The intent of this analysis is to determine the existing and potential future noise levels on the project site, and to provide mitigation measures where future noise levels on the project site are expected to exceed the City of Stockton General Plan noise level criteria. Figure 1 shows the project site.

BACKGROUND ON NOISE AND ACOUSTICAL TERMINOLOGY

Noise is often described as unwanted sound. Sound is defined as any pressure variation in air that the human ear can detect. If the pressure variations occur frequently enough (at least 20 times per second) they can be heard, and are called sound. The number of pressure variations per second is called the frequency of sound, and is expressed as cycles per second, called Hertz (Hz).

Measuring sound directly in terms of pressure would require a very large and awkward range of numbers. To avoid this, the decibel scale was devised. The decibel scale uses the hearing threshold (20 micropascals of pressure), as a point of reference, defined as 0 dBA. Other sound pressures are then compared to the reference pressure, and the logarithm is taken to keep the numbers in a practical range. The decibel scale allows a million-fold increase in pressure to be expressed as 120 dBA. Another useful aspect of the decibel scale is that changes in decibel levels correspond closely to human perception of relative loudness. Figure 2 illustrates common noise levels associated with various sources.

The perceived loudness of sounds is dependent upon many factors, including sound pressure level and frequency content. However, within the usual range of environmental noise levels, perception of loudness is relatively predictable, and can be approximated by weighing the frequency response of a sound level meter by means of the standardized A-weighting network. There is a strong correlation between A-weighted sound levels (expressed as dBA) and community response to noise. For this reason, the A-weighted sound level has become the standard tool of environmental noise assessment. All noise levels reported in this section are in terms of A-weighted levels.

1 For an explanation of these terms, see Appendix A: "Acoustical Terminology"
Community noise is commonly described in terms of the "ambient" noise level, which is defined as the all-encompassing noise level associated with a given noise environment. A common statistical tool to measure the ambient noise level is the average, or equivalent, sound level (L_{eq}). The L_{eq} is the foundation of the day/night average noise descriptor, L_{d/n}, and shows very good correlation with community response to noise.

![Figure 2](image)

Figure 2
Typical A-Weighted Sound Levels of Common Noise Sources

<table>
<thead>
<tr>
<th>Loudness Ratio Level</th>
<th>A-Weighted Sound Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>130 Threshold of pain</td>
</tr>
<tr>
<td>64</td>
<td>120 Jet aircraft take-off at 100 feet</td>
</tr>
<tr>
<td>32</td>
<td>110 Riveting machine at operator's position</td>
</tr>
<tr>
<td>16</td>
<td>100 Shot-gun at 200 feet</td>
</tr>
<tr>
<td>8</td>
<td>90 Bulldozer at 50 feet</td>
</tr>
<tr>
<td>4</td>
<td>80 Diesel locomotive at 300 feet</td>
</tr>
<tr>
<td>2</td>
<td>70 Commercial jet aircraft interior during flight</td>
</tr>
<tr>
<td>1</td>
<td>60 Normal conversation speech at 5-10 feet</td>
</tr>
<tr>
<td>1/2</td>
<td>50 Open office background level</td>
</tr>
<tr>
<td>1/4</td>
<td>40 Background level within a residence</td>
</tr>
<tr>
<td>1/8</td>
<td>30 Soft whisper at 2 feet</td>
</tr>
<tr>
<td>1/16</td>
<td>20 Interior of recording studio</td>
</tr>
</tbody>
</table>

The Day-night Average Level (L_{d/n}) is based upon the average noise level over a 24-hour day, with a +10 decibel weighting applied to noise occurring during nighttime (10:00 p.m. to 7:00 a.m.) hours. The nighttime penalty is based upon the assumption that people react to nighttime noise exposures as though they were twice as loud as daytime exposures. Because L_{d/n} represents a 24-hour average, it tends to disguise short-term variations in the noise environment.
The noise level criteria which are described in this report include descriptors such as the L_{max} which is the maximum noise level which may occur during a time period, L_{eq} which is the logarithmic average over a given period of time, and the L_{dn} which is the logarithmic average over a 24-hour period.

Issues

One of the issues relevant to this project is where on the project site should the City apply the exterior noise level criteria. The exterior noise level criterion is generally applied at the outdoor activity areas of a project site. In the case of a single family residential development, the exterior noise level standard is applied at the rear yard area of each residence.

In the case of multi-family residential developments, the standard could be applied at the individual patios, a property line, or at a common area which is designated for recreation or outdoor activities such as the recreation or pool areas. This practice is common in many jurisdictions. Generally, the intent is to allow for an outdoor area where individuals can relax and conduct outdoor activities, and then focus on maintaining interior noise levels consistent with the General Plan Noise Element for each of the individual units.

The proposed Nixon Project Development includes designated common outdoor recreation areas, as well as individual outdoor patio areas on the project site. This analysis will focus on applying the exterior noise level criteria at the common outdoor recreation areas.

CRITERIA FOR ACCEPTABLE NOISE EXPOSURE

City of Stockton General Plan:

For transportation noise sources, such as traffic and railroad line operations, the City of Stockton General Plan establishes a "Normally Acceptable" exterior noise level standard for residential uses of 65 dBA L_{dn}, which is applied at the outdoor activity areas. A "Conditionally Acceptable" exterior noise level standard of 70 dBA L_{dn} is applied only after careful study and inclusion of protective measures as needed for intended use. The City also establishes an interior noise level criterion of 45 dBA L_{dn}.

EVALUATION OF NOISE LEVELS AT THE PROJECT SITE

Traffic Noise Prediction Methodology:

To describe existing and projected noise levels due to traffic, J.C. Brennan & Associates, Inc. employs the Federal Highway Administration (FHWA) Highway Traffic Noise Prediction Model (FHWA RD-77-108). The FHWA model is the analytical method currently favored for traffic noise prediction by most state and local agencies, including the California Department of Transportation (Caltrans). The model is based upon the Calveno reference noise factors for
automobiles, medium trucks and heavy trucks, with consideration given to vehicle volume, speed, roadway configuration, distance to the receiver, and the acoustical characteristics of the site.

On October 24th 2005, J.C. Brennan & Associates, Inc. staff conducted noise level measurements and concurrent traffic counts of Holman Road at the project site. The purpose of the short-term traffic noise level measurements is to determine the accuracy of the FHWA model in describing the existing noise environment on the project site, accounting for shielding from local topography, actual travel speeds, and roadway grade. Noise measurement results were compared to the FHWA model results by entering the observed traffic volume, speed and distance as inputs to the model.

Instrumentation used for the measurements was a Larson Davis Laboratories (LDL) Model 820 precision integrating sound level meter which was calibrated in the field before use with an LDL CA-200 acoustical calibrator. The noise measurement sites were selected to generally represent the back yards of the residential lots facing Holman Road and are shown in Figure 1.

Based upon the calibration results, the FHWA Model was found to reasonably predict traffic noise levels, as shown in Table 1. Appendix B shows a complete listing of inputs to the FHWA Model.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Holman Road</td>
<td>10:58am</td>
<td>273</td>
<td>10</td>
<td>4</td>
<td>40</td>
<td>375</td>
<td>56.0</td>
<td>54.1</td>
</tr>
<tr>
<td>11:13 am</td>
<td>206</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>40</td>
<td>375</td>
<td>54.0</td>
<td>53.3</td>
</tr>
</tbody>
</table>

* Acoustically "soff" station assumed

Source: J.C. Brennan & Associates, Inc. - 2005

To determine future traffic noise levels at the project site, J.C. Brennan & Associates, Inc. utilized existing file data, (Environmental Noise Analysis, Blossom Ranch Community, Stockton, California, conducted by: Bollard & Brennan, Inc., June 22, 2001). The FHWA traffic noise model was used to determine the affects of future traffic noise levels on the project site, which are shown in Table 2. A complete listing of the FHWA Model inputs and results are also provided in Appendix C.
Table 2
Predicted Future Traffic Noise Levels
Year: 2025

<table>
<thead>
<tr>
<th>Distance to Noise Contours*</th>
<th>Predicted Ldn at Nearest Building Façade (375 feet)</th>
<th>Predicted Ldn at Nearest Outdoor Activity Area (625 feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 dB Ldn</td>
<td>65 dB Ldn</td>
<td>60 dB Ldn</td>
</tr>
<tr>
<td>79 ft</td>
<td>170 ft</td>
<td>366 ft</td>
</tr>
</tbody>
</table>

*Predicted distances to noise level contours are from the roadway centerline.
Source: j.c. brennan & associates, Inc. - 2005

The analysis in Table 2 indicates that the nearest building facade and the outdoor activity area will comply with the City of Stockton exterior noise level criterion of 65 dB Ldn.

Existing Railroad Noise:

On October 24 2004, j.c. brennan & associates, Inc. staff conducted continuous noise level measurements of UPRR operations on the project site. Utilizing the collected hourly data and file data, (Environmental Noise Analysis, Morada Property Investors SFD Site, Stockton California, conducted by: j.c. brennan & associates, Inc. July 10, 2005), single event noise level data due to train passbys adjacent to the project site were used to determine train operations. The results indicated that the typical train operation resulted in an average sound exposure level (SEL) of 100 dB at a distance of 75 feet from the railroad track centerline. Based upon the noise measurement data, approximately 30 trains per day operate along the track, with approximately 35% of the trains operating during the nighttime hours (10 p.m. to 7 a.m.) and 65% of the trains operating during the daytime hours (7 a.m. to 10 p.m.). The hourly noise measurement results are provided in Figure 3.

To determine the Ldn value associated with the railroad operations on the project site, the following formula can be used:

\[L_{dn} = SEL + 10 \log N_{eq} - 49.4 \text{ dB, where:} \]

SEL is the mean measured SEL of the train events (100 dB at a distance of 75 feet), \(N_{eq} \) is the sum of the daytime (7 a.m. to 10 p.m.) train events plus 10 times the number of nighttime (10 p.m. to 7 a.m.) train events, and 49.4 is ten times the logarithm of the number of seconds per day. Based upon this information, the Ldn is predicted to be 72 dB at a distance of 75 feet. The distances to the railroad operation noise level contours are shown in Table 3. Future railroad operation data was not available; therefore, the existing railroad operation data will be used for the analysis of future railroad operation.
Figure 3
Continuous Measured Hourly Noise Levels
Nixon Parcel
October 24-25, 2005

Sound Level, dBA

12 PM 4 PM 8 PM 12 AM 4 AM 8 AM 11 AM

Ldn = 61.5 dB

Leq Lmax L50 L90

j.c. brennan & associates
consultants in acoustics
Table 3
Predicted Existing Railroad Operation Noise Levels

<table>
<thead>
<tr>
<th>Distance to Noise Contours*</th>
<th>Predicted Ldn at Nearest Building Façade (500 feet)</th>
<th>Predicted Ldn at Nearest Outdoor Activity Areas (1800 feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 dB Ldn</td>
<td>65 dB Ldn</td>
<td>70 dB Ldn</td>
</tr>
<tr>
<td>473 feet</td>
<td>220 feet</td>
<td>102 feet</td>
</tr>
<tr>
<td>50 dB</td>
<td>51 dB</td>
<td></td>
</tr>
</tbody>
</table>

*Predicted distances to noise level contours are from the railroad track centerline.

Based upon the project site plan, it is assumed that the nearest building façades will be approximately 500 feet from the railroad track centerline. The resulting exterior noise levels at the nearest building façade to the railroad are predicted to be approximately 60 dB Ldn. The nearest outdoor activity area is located approximately 1800 feet from the centerline of the tracks. At this distance noise levels associated with railroad operations are predicted to be approximately 51 dB Ldn.

Future Interior Noise Levels:

Standard residential construction (wood siding or two-coat stucco siding, STC-26 windows, door weather stripping, exterior wall insulation, composition plywood roof, etc.), results in an exterior to interior noise reduction of about 25 dB with windows closed, and approximately 15 dB with windows open.

Worst case exterior traffic noise levels at the first row of residences are predicted to be approximately 60 dB Ldn at unshielded first floor façades. Therefore interior traffic noise levels at unshielded first floor façades are predicted to comply with the 45 dB Ldn interior noise level criterion.

Second floor façades are predicted to be exposed to traffic noise levels approximately 2 to 3 dB higher (63 dB Ldn). This is due to the fact that second floor façades will not benefit from shielding due to barriers, and will not benefit from excess ground attenuation. Therefore interior traffic noise levels at unshielded second floor façades are predicted to comply with the 45 dB Ldn interior noise level criterion provided standard residential construction practices are followed.

Mechanical ventilation would be required to allow occupants to close windows and doors for the appropriate acoustical isolation.

The nearest building façade to the UPRR tracks is approximately 500 feet from the centerline. The predicted railroad noise level at the nearest building façade is 60 dB. Based upon the discussion above, it is expected that second floor façades will comply with the 45 dB Ldn interior noise level criterion.
CONCLUSIONS

The Nixon Property Development project site will comply with the City of Stockton exterior and interior noise level criterion of 65 dB Ldn and 45 dB Ldn respectively, provided that the following recommendations are included in the project design:

1. Standard residential construction practices are followed, as previously discussed in this report.

2. Air conditioning should be included in the units to allow occupants to close doors and windows as desired for acoustical isolation.

These conclusions are based upon the railroad noise level data collected by j.e. brennan & associates, Inc. and traffic contained within the traffic study prepared for this project. Variations from the proposed site plans could cause noise levels at the project site to differ from those predicted in this analysis.

The estimates of 25 and 30 dB exterior to interior railroad and traffic noise reduction with windows closed is based on j.e. brennan & associates, Inc. staff analysis and field testing conducted in recent years. Careful workmanship is required to ensure that the performance of the actual facades is consistent with this estimate. It is the responsibility of the builder to ensure that all materials and construction practices employed for this project are consistent with local building code requirements and with the recommendations cited in this report. j.e. brennan & associates, Inc. is not responsible for degradation of acoustical performance due to failure to adhere to the recommendations or applicable building code requirements.
Appendix A

Acoustical Terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustics</td>
<td>The science of sound.</td>
</tr>
<tr>
<td>Ambient Noise</td>
<td>The distinctive acoustical characteristics of a given space consisting of all noise sources audible at that location. In many cases, the term ambient is used to describe an existing or pre-project condition such as the setting in an environmental noise study.</td>
</tr>
<tr>
<td>Attenuation</td>
<td>The reduction of an acoustic signal.</td>
</tr>
<tr>
<td>A-Weighting</td>
<td>A frequency-response adjustment of a sound level meter that conditions the output signal to approximate human response.</td>
</tr>
<tr>
<td>Decibel or dB</td>
<td>Fundamental unit of sound. A Bell is defined as the logarithm of the ratio of the sound pressure squared over the reference pressure squared. A Decibel is one-tenth of a Bell.</td>
</tr>
<tr>
<td>CNEL</td>
<td>Community Noise Equivalent Level. Defined as the 24-hour average noise level with noise occurring during evening hours (7 - 10 p.m.) weighted by a factor of three and nighttime hours weighted by a factor of 10 prior to averaging.</td>
</tr>
<tr>
<td>Frequency</td>
<td>The measure of the rapidity of alterations of a periodic signal, expressed in cycles per second or hertz.</td>
</tr>
<tr>
<td>Ldn</td>
<td>Day/Night Average Sound Level. Similar to CNEL but with no evening weighting.</td>
</tr>
<tr>
<td>Leq</td>
<td>Equivalent or energy-averaged sound level.</td>
</tr>
<tr>
<td>Lmax</td>
<td>The highest root-mean-square (RMS) sound level measured over a given period of time.</td>
</tr>
<tr>
<td>L(n)</td>
<td>The sound level exceeded a described percentile over a measurement period. For instance, an hourly L50 is the sound level exceeded 50% of the time during the one hour period.</td>
</tr>
<tr>
<td>Loudness</td>
<td>A subjective term for the sensation of the magnitude of sound.</td>
</tr>
<tr>
<td>Noise</td>
<td>Unwanted sound.</td>
</tr>
<tr>
<td>Peak Noise</td>
<td>The level corresponding to the highest (not RMS) sound pressure measured over a given period of time. This term is often confused with the "Maximum" level, which is the highest RMS level.</td>
</tr>
<tr>
<td>RT<sub>60</sub></td>
<td>The time it takes reverberant sound to decay by 60 dB once the source has been removed.</td>
</tr>
<tr>
<td>Sabin</td>
<td>The unit of sound absorption. One square foot of material absorbing 100% of incident sound has an absorption of 1 sabin.</td>
</tr>
<tr>
<td>Threshold of Hearing</td>
<td>The lowest sound that can be perceived by the human auditory system, generally considered to be 0 dB for persons with perfect hearing.</td>
</tr>
<tr>
<td>Threshold of Pain</td>
<td>Approximately 120 dB above the threshold of hearing.</td>
</tr>
<tr>
<td>Impulsive</td>
<td>Sound of short duration, usually less than one second, with an abrupt onset and rapid decay.</td>
</tr>
<tr>
<td>Simple Tone</td>
<td>Any sound which can be judged as audible as a single pitch or set of single pitches.</td>
</tr>
</tbody>
</table>
Appendix B
FHWA Traffic Noise Prediction Model (FHWA-RD-77-108)
Calibration Worksheet

Project Information:
- Job Number: 2005-109
- Project Name: Nixon Parcel
- Roadway Tested: Holman Rd
- Test Location: West edge of project site
 - Test Date: October 24, 2005

Weather Conditions:
- Temperature (Fahrenheit): 80
- Relative Humidity: Mod.
- Wind Speed and Direction: 5-10 from West
- Cloud Cover: Clear

Sound Level Meter:
- Sound Level Meter: LDL Model 820
- Calibrator: LDL Model CA200
- Meter Calibrated: Immediately before and after test
- Meter Settings: A-weighted, slow response

Microphone:
- Microphone Location: On Project Site
- Distance to Centerline (feet): 375
- Microphone Height: 12 feet above ground
- Intervening Ground (Hard or Soft): Soft
- Elevation Relative to Road (feet): 12

Roadway Condition:
- Pavement Type: Asphalt
- Pavement Condition: Good
- Number of Lanes: 4
- Posted Maximum Speed (mph): 40

Test Parameters:
- Test Time: 10:58 AM
- Test Duration (minutes): 15
- Observed Number Automobiles: 273
- Observed Number Medium Trucks: 10
- Observed Number Heavy Trucks: 4
- Observed Average Speed (mph): 40

Model Calibration:
- Measured Average Level (L_{eq}): 56.0
- Level Predicted by FHWA Model: 54.1
- Difference: -1.9 dB

Conclusions:

j.c. brennan & associates
consultants in acoustics
Appendix B
FHWA Traffic Noise Prediction Model (FHWA-RD-77-108)
Calibration Worksheet

Project Information:
Job Number: 2005-109
Project Name: Nixon Parcel
Roadway Tested: Holman Rd
Test Location: West edge of project site
Test Date: October 24, 2005

Weather Conditions:
Temperature (Fahrenheit): 80
Relative Humidity: Mod.
Wind Speed and Direction: 5-10 from West
Cloud Cover: Clear

Sound Level Meter:
Sound Level Meter: LDL Model 820
Calibrator: LDL Model CA200
Meter Calibrated: Immediately before and after test
Meter Settings: A-weighted, slow response

Microphone:
Microphone Location: On Project Site
Distance to Centerline (feet): 375
Microphone Height: 12 feet above ground
Intervening Ground (Hard or Soft): Soft
Elevation Relative to Road (feet): 12

Roadway Condition:
Pavement Type: Asphalt
Pavement Condition: Good
Number of Lanes: 4
Posted Maximum Speed (mph): 40

Test Parameters:
Test Time: 11:13 AM
Test Duration (minutes): 15
Observed Number Automobiles: 206
Observed Number Medium Trucks: 15
Observed Number Heavy Trucks: 2
Observed Average Speed (mph): 40

Model Calibration:
Measured Average Level (L_{eq}): 54.0
Level Predicted by FHWA Model: 53.3
Difference: -0.7 dB

Conclusions:
Appendix C

FHWA-RD-77-108 Highway Traffic Noise Prediction Model

Data Input Sheet

<table>
<thead>
<tr>
<th>Segment</th>
<th>Roadway Name</th>
<th>Receiver Location</th>
<th>ADT</th>
<th>Day %</th>
<th>Eve %</th>
<th>Night %</th>
<th>% Med. Trucks</th>
<th>% Hvy. Trucks</th>
<th>Speed</th>
<th>Distance</th>
<th>Offset (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Holman Road</td>
<td>Existing</td>
<td>22,930</td>
<td>85</td>
<td></td>
<td>15</td>
<td>2.5</td>
<td>1.5</td>
<td>45</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Holman Road</td>
<td>Cumulative</td>
<td>34,280</td>
<td>85</td>
<td></td>
<td>15</td>
<td>2.5</td>
<td>1.5</td>
<td>45</td>
<td>375</td>
<td></td>
</tr>
</tbody>
</table>

j.c. brennan & associates

consultants in acoustics
Appenlix C
FHWA-RD-77-108 Highway Traffic Noise Prediction Model
Predicted Levels

<table>
<thead>
<tr>
<th>Segment</th>
<th>Roadway Name</th>
<th>Receiver Location</th>
<th>Autos</th>
<th>Medium Trucks</th>
<th>Heavy Trucks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Holman Road</td>
<td>Existing</td>
<td>56.4</td>
<td>48.8</td>
<td>51.1</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>Holman Road</td>
<td>Cumulative</td>
<td>58.2</td>
<td>50.6</td>
<td>52.9</td>
<td>60</td>
</tr>
</tbody>
</table>

j.c. brennan & associates
consultants in acoustics
Appendix C
FHWA-RD-77-108 Highway Traffic Noise Prediction Model
Noise Contour Output

Project #: 2005-109
Description: Nixon Property
Ldn/CNEL: Ldn
Hard/Soft: Soft

<table>
<thead>
<tr>
<th>Segment</th>
<th>Roadway Name</th>
<th>Receiver Location</th>
<th>75</th>
<th>70</th>
<th>65</th>
<th>60</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Holman Road</td>
<td>Existing</td>
<td>28</td>
<td>60</td>
<td>130</td>
<td>280</td>
<td>603</td>
</tr>
<tr>
<td>2</td>
<td>Holman Road</td>
<td>Cumulative</td>
<td>37</td>
<td>79</td>
<td>170</td>
<td>366</td>
<td>789</td>
</tr>
</tbody>
</table>

j.c. brennan & associates
consultants in acoustics
MONTAGE CONDOMINIUMS TRAFFIC IMPACT STUDY
CITY OF STOCKTON

FINAL REPORT

Prepared For:
KB Homes

Prepared By
WOOD RODGERS
ENGINEERING • PLANNING • MAPPING • SURVEYING
3301 C Street, Building 100-B
Sacramento, California 95816
(916) 341-7760

August 2006

1827.001
(1827-Montage Condos TIS 08082006.doc)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>EXISTING ROADWAY SYSTEM</td>
<td>4</td>
</tr>
<tr>
<td>EXISTING PEDESTRIAN, BIKE AND TRANSIT FACILITIES</td>
<td>5</td>
</tr>
<tr>
<td>EXISTING TRAFFIC VOLUMES</td>
<td>5</td>
</tr>
<tr>
<td>LEVEL-OF-SERVICE METHODOLOGY</td>
<td>5</td>
</tr>
<tr>
<td>EXISTING CONDITIONS' TRAFFIC OPERATIONS</td>
<td>10</td>
</tr>
<tr>
<td>Intersections</td>
<td>10</td>
</tr>
<tr>
<td>Roadway Segments</td>
<td>11</td>
</tr>
<tr>
<td>"EXISTING PLUS APPROVED/PENDING PROJECTS"</td>
<td>11</td>
</tr>
<tr>
<td>"EXISTING PLUS APPROVED/PENDING PROJECTS' CONDITIONS' TRAFFIC OPERATIONS</td>
<td>12</td>
</tr>
<tr>
<td>Intersections</td>
<td>12</td>
</tr>
<tr>
<td>Roadway Segments</td>
<td>15</td>
</tr>
<tr>
<td>PROJECT DESCRIPTION</td>
<td>15</td>
</tr>
<tr>
<td>Proposed Project Trip Generation</td>
<td>16</td>
</tr>
<tr>
<td>Project Trip Distribution and Assignment</td>
<td>17</td>
</tr>
<tr>
<td>Project Site Access and Driveway Intersections</td>
<td>17</td>
</tr>
<tr>
<td>"EXISTING PLUS APPROVED/PENDING PROJECTS PLUS PROJECT" CONDITIONS</td>
<td>18</td>
</tr>
<tr>
<td>Intersections</td>
<td>18</td>
</tr>
<tr>
<td>Roadway Segments</td>
<td>22</td>
</tr>
<tr>
<td>CUMULATIVE (YEAR 2025) CONDITIONS</td>
<td>22</td>
</tr>
<tr>
<td>"CUMULATIVE BASE (YEAR 2025)" CONDITIONS</td>
<td>23</td>
</tr>
<tr>
<td>Intersections</td>
<td>23</td>
</tr>
<tr>
<td>Roadway Segments</td>
<td>26</td>
</tr>
<tr>
<td>"CUMULATIVE BASE (YEAR 2025) PLUS PROJECT" CONDITIONS</td>
<td>26</td>
</tr>
<tr>
<td>Intersections</td>
<td>26</td>
</tr>
<tr>
<td>Roadway Segments</td>
<td>27</td>
</tr>
<tr>
<td>CUMULATIVE (YEAR 2035) CONDITIONS</td>
<td>27</td>
</tr>
<tr>
<td>"CUMULATIVE (YEAR 2035) BASE" CONDITIONS</td>
<td>28</td>
</tr>
<tr>
<td>Intersections</td>
<td>28</td>
</tr>
<tr>
<td>Roadway Segments</td>
<td>29</td>
</tr>
<tr>
<td>"CUMULATIVE (YEAR 2035) BASE PLUS PROJECT" CONDITIONS</td>
<td>29</td>
</tr>
<tr>
<td>Intersections</td>
<td>29</td>
</tr>
<tr>
<td>Roadway Segments</td>
<td>31</td>
</tr>
<tr>
<td>RECOMMENDED IMPROVEMENTS AND MITIGATION MEASURES</td>
<td>34</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Project Location and Vicinity Map</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Proposed Project Site Plan Map</td>
<td>3</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Existing (2006) Traffic Volumes</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Existing Intersection Lane Geometrics and Control</td>
<td>8</td>
</tr>
<tr>
<td>Figure 5</td>
<td>"Existing plus Approved/Pending Projects" Traffic Volumes</td>
<td>13</td>
</tr>
<tr>
<td>Figure 6</td>
<td>"Existing plus Approved/Pending Projects" Lane Geometrics and Control</td>
<td>14</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Directional Trip Distribution</td>
<td>19</td>
</tr>
<tr>
<td>Figure 8</td>
<td>"Project Only" Traffic Volumes</td>
<td>20</td>
</tr>
<tr>
<td>Figure 9</td>
<td>"Existing plus Approved/Pending Projects plus Project" Traffic Volumes</td>
<td>21</td>
</tr>
<tr>
<td>Figure 10</td>
<td>"Cumulative Base (Year 2025)" Traffic Volumes</td>
<td>24</td>
</tr>
<tr>
<td>Figure 10B</td>
<td>"Cumulative Base (Year 2025)" Intersection Lane Geometrics and Control</td>
<td>25</td>
</tr>
<tr>
<td>Figure 11</td>
<td>"Cumulative Base (Year 2025) plus Project" Traffic Volumes</td>
<td>28</td>
</tr>
<tr>
<td>Figure 12</td>
<td>"Cumulative (Year 2035) Base" Traffic Volumes</td>
<td>30</td>
</tr>
<tr>
<td>Figure 13</td>
<td>"Cumulative (Year 2035) Base plus Project" Traffic Volumes</td>
<td>32</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Recommended EPAP Intersection Geometrics and Control</td>
<td>37</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Recommended Cumulative Base (Year 2025) Intersection Geometrics and Control</td>
<td>41</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Recommended Cumulative (Year 2035) Intersection Geometrics and Control</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Level of Service Definitions and Criteria for Intersections ...9
Table 2. Level of Service (LOS) Criteria for Roadway Segments ...9
Table 3. Existing (2006) Conditions: Intersection Levels of Service ...10
Table 4. Existing (2006) Conditions: Roadway Levels of Service ...11
Table 5. "Existing plus Approved/Pending Projects" Conditions: Intersection Levels of Service15
Table 6. "Existing plus Approved/Pending Projects" Conditions: Roadway Levels of Service15
Table 7. Trip Generation Rates ...16
Table 8. Proposed Project Trip Generation Volumes ..16
Table 9. Currently Zoned Commercial Auto Use Trip Generation Volumes ...16
Table 10. Currently Zoning vs. Proposed Project - Trip Generation Volume Comparisons17
Table 11. "Existing plus Approved/Pending Projects plus Project" Conditions: Intersection Levels of Service ...18
Table 12. "Existing plus Approved/Pending Projects plus Project" Conditions: Roadway Levels of Service 22
Table 13. "Cumulative Base (Year 2025)" Conditions: Intersection Levels of Service23
Table 14. "Cumulative Base (Year 2025)" Conditions: Roadway Levels of Service ..26
Table 15. "Cumulative Base (Year 2025) plus Project" Conditions: Intersection Level of Service27
Table 16. "Cumulative Base (Year 2025) plus Project" Conditions: Roadway Level of Service27
Table 17. "Cumulative (Year 2035) Base" Conditions: Intersection Levels of Service29
Table 18. "Cumulative (Year 2035) Base" Conditions: Roadway Levels of Service31
Table 19. "Cumulative (Year 2035) Base plus Project" Conditions: Intersection Level of Service33
Table 20. "Cumulative (Year 2035) Base plus Project" Conditions: Roadway Level of Service33
Table 21. "Existing" Improved Conditions: Intersection Level of Service ..34
Table 22. Mitigated Short-Term Conditions: Intersection Levels of Service ...35
Table 23. Mitigated Cumulative (Year 2025) Conditions: Intersection Levels of Service40
Table 24. Mitigated Cumulative (Year 2035) Conditions: Intersection Levels of Service44

APPENDIX

Appendix Table 1 – Summary of Intersection Levels of Service ("Mitigation Matrix")
Appendix Table 2 – Summary of Project Fair-Share Estimatats for Off-Site Study Intersections
Appendix Table 3 – Summary of Project Fair-Share Estimatats for Off-Site Study Roadway Segments
Appendix – Level of Service Worksheets
Appendix Comments – City of Stockton Comment Letter, Dated July 26, 2006
INTRODUCTION

This report has been prepared to present the results of a traffic impact analysis performed by Wood Rodgers, Inc. for the proposed Montage Condominiums development project within the northeastern portion the City of Stockton. The proposed project is an approximately 19.1-acre, 210-residential condominium unit development with associated parking spaces. The general location of the project site (sometimes referred to as the “Nixon Property”) is west of Holman Road / Auto Center Drive (South) intersection, south of Hammer Lane, west of State Route 99 (SR 99), and within the northeastern portion of the City of Stockton. The proposed project represents a City General Plan Amendment and Rezone request for the approximately 19.1-acre “Commercial Auto (CA)” zoned project parcel to Medium Density Residential (RM) use. The term “project”, as used in this report, refers to the construction of the proposed Montage Condominiums Subdivision development.

Figure 1 illustrates the project location and project vicinity map. Figure 2 illustrates the proposed tentative Land Use Map for the project dated January 4, 2006.

In this traffic study, Wood Rodgers has generally utilized the proposed Land Use Map illustrated on Figure 2 for traffic impact analysis purposes. According to the proposed land use plan concept, the full buildout of the approximately 19.1-acre site would develop 210-residential condominium dwelling units and associated parking stalls.

The analyses contained in this report focus on traffic operating conditions at study intersections and roadway segments located within the vicinity of the proposed project site under existing, short-term future, and cumulative (long-term future) scenarios. All scenarios are analyzed under conditions both with and without the development of the proposed project. Included in this report are the following sections:

- A description of the existing transportation/circulation setting.
- Analysis of “Existing” conditions.
- Analysis of a “Existing plus Approved/Pending Projects” (EPAP) condition that considers currently approved/pending projects within project vicinity per current City of Stockton “EPAP” model projections, and a “Existing plus Approved/Pending Projects plus Project” condition that considers existing approved/pending conditions with the proposed project development.
- Analysis of a “Cumulative Base” condition that considers a long-term (Year 2025) land development scenario within project vicinity per current City of Stockton General Plan (1990 version) land use designations, and a “Cumulative Base plus Project” condition that considers cumulative conditions with the proposed project development. A similar cumulative analysis per the proposed new General Plan traffic model under “Cumulative (Year 2035) Base” and a “Cumulative (Year 2035) Base plus Project” is also included.
- Recommendations on short-term and long-term improvements and potential “mitigation” measures needed to alleviate unacceptable levels of traffic impacts at critical “off-site” intersections and roadway segments, under conditions both with and without the development of the proposed project and a discussion of the significance of project impacts.
EXISTING ROADWAY SYSTEM

The City of Stockton is located in San Joaquin County, north of the City of Manteca, and south of the City of Lodi, within the Central Valley region of California. The project study area is located in the northeastern portion of the City of Stockton. Roadways that currently provide primary circulation in the vicinity of the project site are as follows:

State Route 99 (SR 99) is a major freeway of statewide importance that traverses north-south through most of central and northern California. SR 99 serves as the principal inter-regional auto and truck travel route that connects major Central Valley population centers such as the Cities of Stockton, Modesto, Merced and Fresno with the Sacramento metropolitan area to the north and the Los Angeles urban basin to the south. Within San Joaquin County, SR 99 serves as an important north-south commuter route and truck route connecting the communities of Lodi, Stockton, Manteca and Ripon. Through the project study area, SR 99 has a general six-lane divided freeway cross-section with 65 mph posted speed limits. The Caltrans’ Draft Transportation System Development Plan and the 2001 San Joaquin Regional Transportation Plan (RTP) both identify plans to ultimately widen SR 99 through the project area to an eight lane freeway section.

Within the project area, SR 99 forms a full access interchange with Hammer Lane, approximately 0.75 miles east of Hammer Lane/Holman Road intersection. According to 2004 Caltrans traffic volumes data (available from Caltrans website), SR 99 mainline carries an Annual Average Daily Traffic (AADT) of approximately 93,000 vehicles south of, and 77,000 vehicles north of the interchange with Hammer Lane. According to 2004 Caltrans truck traffic volume data (available from Caltrans website), trucks comprise approximately 13.4% of the average daily traffic on the SR 99 segment through the two interchanges.

Hammer Lane is a two-to-eight-lane (one-to-four-lanes each direction) east-west arterial that traverses across the northern portion of the City of Stockton. Hammer Lane connects between Interstate 5 to the west, and SR 99 to the east, running a distance of approximately 5.8 miles.

Holman Road is a two-to-six-lane (one-to-three-lanes each direction) north-south arterial. Holman Road connects between March Lane to the south and currently stops continuity at the Stockton City limit line, approximately 0.7 miles north of Morada Lane, running a total distance of approximately 2.8 miles. Per the City of Stockton's General Plan Circulation Element, Holman Road is planned to be extended north from Morada Lane to Micke Grove Road/Eight Mile Road intersection. Holman Road has a four-lane cross-section south of March Lane and six-lanes between March Lane and Hammer Lane. The future Holman Road segment between Eight Mile Road and Morada Lane is planned to have an ultimate eight-lane cross-section.

Auto Center Circle (North) is a two-lane east-west roadway that extends west from Holman Road, approximately 385-feet south of Hammer Lane/Holman Road intersection. Auto Center Drive (North) forms a signalized intersection with Holman Road.

Auto Center Circle (South) is a two-lane east-west roadway that extends west from Holman Road/Telstar Plaza, approximately 0.25 miles south of Hammer Lane/Holman Road intersection. Auto Center Drive (South)/Telstar Plaza forms a signal controlled intersection with Holman Road.
EXISTING PEDESTRIAN, BIKE AND TRANSIT FACILITIES

Pedestrian and bicycle activity were observed in the immediate vicinity of the project site. Below summarizes the observations;

March Lane, west of Holman Road – This segment of March Lane has typical sidewalk, bike lanes/paved shoulders on both north and south sides of the roadway.

Holman Road – between March Lane and Hammer Lane – This segment of Holman Road has typical sidewalk, bike lanes/paved shoulders on both east and west sides of the roadway.

Hammer Lane – between Girardi Road and SR 99 Interchange – This segment of Hammer Lane has typical sidewalk, bike lanes/paved shoulders on both north and south sides of the roadway.

Auto Center Drive (S) – west of Holman Road – This segment of Auto Center Drive has bike lanes/paved shoulders on both north and south sides of the roadway. There are typical sidewalks along the north side of Auto Center Drive (S).

Holman Road between March Lane and Hammer Lane, and March Lane west of Holman Road are classified Class II Bike Lanes and are part of the City’s bicycle system. Bicycle travel within residential neighborhoods can easily be accommodated within the proposed local streets without the need for additional signing or striping.

The San Joaquin Regional Transit District (SJRTD) operates bus service in the City of Stockton, Routes 13 and Route 17. There is transit service in along Hammer Lane, Holman Road and Telesstar Plaza roadway. There are currently buss stops on the west and east sides of Holman Road, near Holman Road / Auto Center Drive (S) / Telesstar Plaza intersection. There are also buss stops along north and south sides of Hammer Lane, near Holman Road / Hammer Lane intersection.

EXISTING TRAFFIC VOLUMES

Wood Rodgers conducted new existing AM and PM peak hour intersection traffic counts within the study area on March 22, 2005 (Tuesday). The AM peak hour is defined as the highest one hour of traffic flow counted between 7:00 AM and 9:00 AM on a typical weekday, and the PM peak hour is defined as the highest one hour of traffic flow counted between 4:00 PM and 6:00 PM on a typical weekday. Average Daily Traffic (ADT) 24-hour vehicle counts were also taken at study roadway segments between October 11, 2005 and October 13, 2005 (Tuesday to Thursday). The Hammer Lane / State Route 99 interchange is currently open for traffic, but is undergoing an interchange modification project and is under construction. Existing AM and PM peak hour counts were not conducted at the Hammer Lane intersections with West Frontage Road, SR 99 Southbound Ramps, SR 99 Northbound Ramps, and East Frontage Road due to interchange construction.

Figure 3 illustrates the existing (2006) traffic volumes and Figure 4 illustrates the existing intersection lane geometrics and control.

LEVEL-OF-SERVICE METHODOLOGY

Traffic operations have been quantified through the determination of "Level of Service" (LOS). Level of Service is a qualitative measure of traffic operating conditions, whereby a letter grade "A"
through "F" is assigned to an intersection or roadway segment, representing progressively worsening traffic operations.

Levels of Service have been calculated for all intersection control types using methods documented in the Transportation Research Board (TRB) Publication Highway Capacity Manual, Fourth Edition, 2000 (HCM-2000). For two-way-stop-controlled (TWSC) intersections, the "worst-case" movement delays and LOS have been reported, computed based on HCM-2000. For signalized and all-way-stop-controlled (AWSC) intersections, the intersection delays and LOS reported are the average values for the whole intersection, computed based on HCM-2000. The delay-based HCM-2000 LOS criteria for different types of intersection controls are outlined in Table 1. The average daily traffic (ADT) based roadway segment LOS thresholds, which are based upon HCM methodologies, are shown in Table 2.

The City of Stockton Transportation Impact Analysis (TIA) Guidelines (First Draft, dated July 30, 2003) states that,

"The City of Stockton's General Plan has a LOS "D" standard for its roadway system intersections and roadway segments operating at LOS "A", "B", "C", or "D" conditions are considered acceptable, while those operating at LOS "E" or "F" conditions are considered unacceptable."

For a City intersection, a transportation impact for a project is considered significant if the addition of project traffic would cause an intersection that would function at LOS "D" or better without Project to function at LOS "E" or "F".

For City intersections with a LOS "E" or "F" conditions without the project, a transportation impact for a project is considered to be significant if the addition of project traffic causes an increase of greater than 3 seconds in the average delay for the intersection.

The Caltrans published Guide for the Preparation of Traffic Impact Studies (dated December 2002) states the following:

"Caltrans endeavors to maintain a target LOS at the transition between LOS "C" and LOS "D" on State highway facilities, however, Caltrans acknowledges that this may not be always feasible and recommends that the lead agency consult with Caltrans to determine the appropriate target LOS".

Based on the above policies, LOS "D" has been taken as the general threshold of acceptable operations for all study intersections and roadways analyzed in this study.

City TIA Guidelines further state that the City's formula for proportionate "fair share" calculations for project impacts, is as follows: For Existing plus Approved/Pending Projects (EPAP) conditions’ the project fair-share = ((EPAP + Project) - EPAP) volume / (EPAP + Project) volume, and under long-term cumulative General Plan Buildout conditions, project fair-share = ((Cumulative + Project) - Cumulative) volume / (Cumulative + Project) volume.

In this study, a generalized “Peak Hour Factor” (PHF) of 0.92, an approximate 2% peak hour heavy-vehicle composition has been applied under all analysis scenarios. Under signalized conditions, the HCM-recommended suburban traffic signal default cycle length of 100 seconds has been generally used, with 4 seconds of "lost time" per critical signal phase. Traffic 7.7 software has been used to implement the HCM-2000 analysis procedures for intersections.
Table 1. Level of Service Definitions and Criteria for Intersections

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Flow Type</th>
<th>Operational Characteristics</th>
<th>Intersection Control Delay (seconds/vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A"</td>
<td>Stable Flow</td>
<td>Free-flow conditions with negligible to minimal delays. Excellent progression with most vehicles arriving during the green phase and not having to stop at all. Nearly all drivers find freedom of operation.</td>
<td>≤ 10</td>
</tr>
<tr>
<td>"B"</td>
<td>Stable Flow</td>
<td>Good progression with slight delays. Short cycle-lengths typical. Relatively more vehicles stop than under LOS "A". Vehicle platoons are formed. Drivers begin to feel somewhat restricted within groups of vehicles.</td>
<td>> 10 – 20</td>
</tr>
<tr>
<td>"C"</td>
<td>Stable Flow</td>
<td>Relatively higher delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear. The number of vehicles stopping is significant, although many still pass through without stopping. Most drivers feel somewhat restricted.</td>
<td>> 20 – 35</td>
</tr>
<tr>
<td>"D"</td>
<td>Approaching Unstable Flow</td>
<td>Somewhat congested conditions. Longer but tolerable delays may result from unfavorable progression, long cycle lengths, and/or high volume-to-capacity ratios. Many vehicles are stopped. Individual cycle failures may be noticeable. Drivers feel restricted during short periods due to temporary back-ups.</td>
<td>> 35 – 55</td>
</tr>
<tr>
<td>"E"</td>
<td>Unstable Flow</td>
<td>Congested conditions. Significant delays result from poor progression, long cycle lengths, and high volume-to-capacity ratios. Individual cycle failures occur frequently. There are typically long queues of vehicles waiting upstream of the intersection. Driver maneuverability is very restricted.</td>
<td>> 55 – 80</td>
</tr>
<tr>
<td>"F"</td>
<td>Forced Flow</td>
<td>Jammed or grid-lock type operating conditions. Generally considered to be unacceptable for most drivers. Zero or very poor progression, with over-saturation or high volume-to-capacity ratios. Several individual cycle failures occur. Queue spillovers from other locations restrict or prevent movement.</td>
<td>> 80</td>
</tr>
</tbody>
</table>

Source: HCM-2000, Exhibits 16-2, 17-2 and 17-22

Table 2. Level of Service (LOS) Criteria for Roadway Segments

<table>
<thead>
<tr>
<th>Roadway Type</th>
<th>Maximum Two-way Average Daily Traffic (ADT) Volume-Carrying Capacity for each LOS Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS "A"</td>
</tr>
<tr>
<td>3-Lane Divided Arterial (with left-turn lane)</td>
<td>42,000</td>
</tr>
<tr>
<td>6-Lane Divided Arterial (with left-turn lane)</td>
<td>32,000</td>
</tr>
<tr>
<td>4-Lane Divided Arterial (with left-turn lane)</td>
<td>22,000</td>
</tr>
<tr>
<td>4-Lane Undivided Arterial (no left-turn lane)</td>
<td>18,000</td>
</tr>
<tr>
<td>2-Lane Arterial (with left-turn lane)</td>
<td>11,000</td>
</tr>
<tr>
<td>2-Lane Arterial (no left-turn lane)</td>
<td>9,000</td>
</tr>
<tr>
<td>2-Lane Collector/Local Street</td>
<td>6,000</td>
</tr>
</tbody>
</table>

Notes: All volume thresholds are approximate and assume ideal roadway characteristics. Actual threshold volumes for each Level of Service listed above may vary depending on a variety of factors including (but not limited to) roadway curvature and grade, intersection or interchange spacing, driveway spacing, percentage of trucks and other heavy vehicles, travel lane widths, signal timing characteristics, on-street parking, volume of cross traffic and pedestrians, etc.
All of the study intersections are either currently signalized or planned to be signalized with the completion of Hammer Lane / SR 99 Interchange modifications. Therefore, no supplemental traffic signal warrant analysis has generally been necessary. The term “signal warrants” refers to the list of established criteria used by Caltrans and other public agencies to quantitatively justify or ascertain the need for installation of a traffic signal at an unsignalized intersection location. As relevant, this study generally employs signal warrant criteria presented in the Manual on Uniform Traffic Control Devices 2003 (MUTCD 2003) used in conjunction with the California Supplement to MUTCD 2003. The MUTCD signal warrant criteria are based upon several factors including volume of vehicular and pedestrian traffic, location of school areas, frequency of accidents, etc. MUTCD 2003 indicates that “the satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.”

EXISTING CONDITIONS’ TRAFFIC OPERATIONS

Existing (2006) conditions’ intersection and roadway segment operations were quantified and are summarized in this section.

INTERSECTIONS

Table 3 summarizes existing intersection operations, quantified using the existing traffic volumes (shown on Figure 3) and existing intersection lane geometrics and control (shown on Figure 4).

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection:</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOS</td>
<td>Delay (Sec/Veh)</td>
</tr>
<tr>
<td>1</td>
<td>Holman Rd / March Ln</td>
<td>Signal</td>
<td>E</td>
<td>75.8</td>
</tr>
<tr>
<td>2</td>
<td>Holman Rd / Auto Cantar Dr (S)/Telstar Pl</td>
<td>Signal</td>
<td>B</td>
<td>14.7</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd / Auto Center Dr (N)</td>
<td>Signal</td>
<td>A</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>Girardi WY / Pavilion Plz / Hammer Ln</td>
<td>Signal</td>
<td>B</td>
<td>12.3</td>
</tr>
<tr>
<td>5</td>
<td>Holman Rd / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>30.8</td>
</tr>
<tr>
<td>6</td>
<td>Marantha Dr / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>37.1</td>
</tr>
<tr>
<td>7</td>
<td>W Frontage Rd / SR 99 SBR / Hammer Ln</td>
<td></td>
<td></td>
<td>Under Construction</td>
</tr>
<tr>
<td>8</td>
<td>E Frontage Rd / SR 99 NBR / Hammer Ln</td>
<td></td>
<td></td>
<td>Under Construction</td>
</tr>
<tr>
<td>9</td>
<td>E Frontage Rd / Hammer Ln</td>
<td></td>
<td></td>
<td>Under Construction</td>
</tr>
</tbody>
</table>

Notes:
1. "Average" control delays (in seconds/vehicle) are indicated for signal-controlled intersections.

As shown in Table 3, the Holman Road / March Lane signalized intersection is currently operating at AM and PM peak hour LOS “E” conditions. The remaining study intersections are currently operating at AM and PM peak hour LOS “D” or better conditions. As discussed with the City, the Hammer Lane intersections with SR 99 Southbound Ramps/West Frontage Road, SR 99 Northbound Ramps/East Frontage Road, and East Frontage Road are not analyzed under existing conditions due to the currently ongoing construction of the Hammer Lane / SR 99 interchange modifications. All recommended improvements and mitigation measures are discussed in a subsequent section of this report.
ROADWAY SEGMENTS

Existing roadway operations under existing roadway capacity configurations were quantified utilizing roadway ADT-based LOS thresholds presented in Table 2. The results are summarized in Table 4.

<table>
<thead>
<tr>
<th>#</th>
<th>Roadway Segment</th>
<th>Existing Functional Capacity Configuration</th>
<th>Average Daily Traffic (ADT)</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March Ln - west of Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>17,890</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Holman Rd - between March Ln & Auto Center Dr (S)/Telestar Pl</td>
<td>8-Lane-Divided-Arterial</td>
<td>16,210</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd - between Auto Center Dr (S)/Telestar Pl & Hammer Ln</td>
<td>8-Lane-Divided-Arterial</td>
<td>14,120</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>Hammer Ln - between Girardl Wy & Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>32,990</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>Hammer Ln - between Holman Rd & Maranatha Dr</td>
<td>8-Lane-Divided-Arterial</td>
<td>33,180</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>Auto Center Dr (S) - west of Holman Rd</td>
<td>2-Lane-Divided-Arterial</td>
<td>1,250</td>
<td>A</td>
</tr>
</tbody>
</table>

Notes: Hammer Lane / SR 99 Interchange overcrossing is currently under construction and is not analyzed under existing conditions.

As shown in Table 4, all of the roadway segments are currently operating at LOS “A” conditions on an average daily traffic basis.

"EXISTING PLUS APPROVED/PENDING PROJECTS"

Based on discussions with City staff, the City’s “Existing plus Approved/Pending Projects” (EPAP) traffic model was utilized to project short-term future base conditions. The “Existing plus Approved/Pending Projects” traffic model developed by the City’s traffic model consultant, superimposes on top of existing volumes the traffic generated by the approved/pending development projects. A review of the “Existing plus Approved/Pending Projects” model indicated that the current Commercial zoned (Commercial Auto, CA) use for the project site is not included in the EPAP traffic model.

The “Existing plus Approved/Pending Projects” traffic volumes were forecasted using the City’s EPAP traffic model. The “Existing plus Approved/Pending Projects plus Project” conditions were then forecasted by incrementally superimposing the proposed rezone project (residential uses) trips on top of EPAP traffic volumes.

As mentioned before, the Hammer Lane / SR 99 Interchange is undergoing modifications which will be completed in the near-future, and this interchange modification is assumed to be in place under EPAP conditions. Based on the Hammer Lane/SR 99 Interchange PSR, the existing SR 99 northbound and southbound ramps at Hammer Lane will be replaced with loop off-ramps and direct on-ramps. Below are the improvements that are planned to be in place under “EPAP” base conditions as described in the Hammer Lane / SR 99 Interchange PSR.

Hammer Lane / Maranatha Drive / West Frontage Road – West Frontage Road, south of Hammer Lane will be relocated to Hammer Lane/Maranatha Drive intersection. Hammer Lane will form the east-west legs, Maranatha Drive will form the north leg, and West Frontage Road will form the south leg of this intersection. This signalized intersection will have the following lane geometrics:

- Northbound approach – Dual left, through, and a shared-through-right-turn-lane (West Frontage Road)
- Southbound approach – Dual left, shared-through-right-turn-lane (Maraanatha Drive)
- Eastbound approach – Single left, three through, and a shared through-right-turn-lane (Hammer Lane)
Montage Condominiums Traffic Impact Study
City of Stockton

- Westbound approach – Dual left, four through, and a right-turn-lane (Hammer Lane)

Hammer Lane / SR 99 Southbound Ramps / West Frontage Road – West Frontage Road, north of Hammer Lane will be relocated as the north leg of this intersection. Hammer Lane will form the east-west legs, West Frontage Road will form the north leg, and SR 99 Southbound direct on-ramp/southbound loop off-ramp will form the south leg of this intersection. This signalized intersection will have the following lane geometrics;

- Northbound approach – Single left, a shared-through-left, and a right-turn-lane (SR 99 Southbound Ramps)
- Southbound approach – Single right-turn-lane (West Frontage Road, right-turns in/out only)
- Eastbound approach – Two through and two exclusive right-turn-lane (Hammer Lane)
- Westbound approach – Dual left, four through, and a right-turn-lane

Hammer Lane / SR 99 Northbound Ramps / East Frontage Road – East Frontage Road, south of Hammer Lane will be relocated as the south leg of this intersection. Hammer Lane will form the east-west legs, East Frontage Road will form the south leg, and SR 99 Northbound direct on-ramp/Northbound loop off-ramp will form the north leg of this intersection. This signalized intersection will have the following lane geometrics;

- Northbound approach – Single left, through, and a right-turn-lane (East Frontage Road)
- Southbound approach – Single shared left-through and two exclusive right-turn-lane (SR 99 Northbound Ramps)
- Eastbound approach – Dual left, two through, a right-turn-lane (Hammer Lane)
- Westbound approach – Single left, a through, and shared through-right-turn-lane

Hammer Lane / East Frontage Road – East Frontage Road, north of Hammer Lane will be relocated east of Hammer Lane / SR 99 Northbound Ramps / East Frontage Road intersection. Hammer Lane will form the east leg and East Frontage Road will form the north leg of this intersection. This intersection will only have eastbound Hammer Lane left-turn onto northbound East Frontage Road and southbound East Frontage Road onto westbound Hammer Lane traffic movement under “BPAP” conditions. This intersection is planned to have the following ultimate lane geometrics;

- Southbound approach – Single left and single right-turn-lane (East Frontage Road)
- Eastbound approach – Dual left, two through
- Westbound approach – Single through, and shared through-right-turn-lane

Figure 5 illustrates the “Existing plus Approved/Pending Projects” traffic volumes. Figure 6 illustrates the “Existing plus Approved/Pending Projects” intersection lane geometrics and control.

"EXISTING PLUS APPROVED/PENDING PROJECTS" CONDITIONS’ TRAFFIC OPERATIONS

"Existing plus Approved/Pending Projects” conditions’ intersection and roadway segment operations were quantified and are summarized in this section.

INTERSECTIONS

"Existing plus Approved/Pending Projects” conditions’ intersection operations were quantified under “Existing plus Approved/Pending Projects” traffic volumes (shown on Figure 5) and “Existing plus Approved/Pending Projects” intersection lane geometrics and control (shown on Figure 6). Table 5 presents the resulting intersection LOS.
Table 5. "Existing plus Approved/Pending Projects" Conditions: Intersection Levels of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOS</td>
<td>Delay (Sec/Veh)</td>
</tr>
<tr>
<td>1</td>
<td>Holman Rd / March Ln</td>
<td>Signal</td>
<td>F</td>
<td>108.3</td>
</tr>
<tr>
<td>2</td>
<td>Holman Rd / Auto Center Dr (S)/Telstar Pl</td>
<td>Signal</td>
<td>C</td>
<td>29.2</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd / Auto Center Dr (N)</td>
<td>Signal</td>
<td>A</td>
<td>6.1</td>
</tr>
<tr>
<td>4</td>
<td>Girardl Wy / Pavilion Plz / Hammer Ln</td>
<td>Signal</td>
<td>B</td>
<td>13.3</td>
</tr>
<tr>
<td>5</td>
<td>Holman Rd / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>35.4</td>
</tr>
<tr>
<td>6</td>
<td>Marantha Dr / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>28.8</td>
</tr>
<tr>
<td>7</td>
<td>W Frontage Rd / SR 99 SBR / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>22.1</td>
</tr>
<tr>
<td>8</td>
<td>E Frontage Rd / SR 99 NBR / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>28.7</td>
</tr>
<tr>
<td>9</td>
<td>E Frontage Rd / Hammer Ln (Two Movement Intersection)</td>
<td>Not Applicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: *Average* control delays (in seconds/vehicle) are indicated for signal-controlled intersections.

As shown in Table 5, the Holman Road / March Lane intersection is projected to operate at EPAP AM and PM peak hour LOS “F” conditions. The remaining study intersections are projected to operate at AM and PM peak hour LOS “D” or better conditions. The East Frontage Road / Hammer Lane is planned to be a two movement intersection, with no conflicting movements and therefore LOS “A” operations are projected.

All recommended improvements and mitigation measures are discussed in a subsequent section of this report.

ROADWAY SEGMENTS

"Existing plus Approved/Pending Projects" roadway operations were quantified utilizing roadway ADT-based LOS thresholds presented previously in Table 2. The results are summarized in Table 6.

Table 6. "Existing plus Approved/Pending Projects" Conditions: Roadway Levels of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Roadway Segment</th>
<th>Existing/Planned Functional Capacity</th>
<th>Average Daily Traffic (ADT)</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March Ln – west of Holman Rd</td>
<td>B-Lane-Divided-Arterial</td>
<td>27,130</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Holman Rd – between March Ln & Auto Center Dr (S)/Telstar Pl</td>
<td>B-Lane-Divided-Arterial</td>
<td>21,400</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd – between Auto Center Dr (S)/Telstar Pl & Hammer Ln</td>
<td>B-Lane-Divided-Arterial</td>
<td>22,240</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>Hammer Ln – between Girardl Wy & Holman Rd</td>
<td>B-Lane-Divided-Arterial</td>
<td>47,800</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Hammer Ln – between Holman Rd & Marantha Dr</td>
<td>B-Lane-Divided-Arterial</td>
<td>44,220</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Auto Center Dr (S) – west of Holman Rd</td>
<td>2-Lane-Divided-Arterial</td>
<td>2,350</td>
<td>A</td>
</tr>
</tbody>
</table>

As shown in Table 6, all of the study roadway segments are projected to operate at "EPAP" LOS "B" or better conditions on an average daily traffic basis.

PROJECT DESCRIPTION

As mentioned in the introduction, Wood Rodgers has utilized the proposed Land Use Map dated January 4, 2006 illustrated on Figure 2 for impact analysis purposes. According to the proposed land use map, the full buildout of the approximately 19.1-acre site (known as the "Nixon Property") would develop 210-residential condominium dwelling units and associated parking spaces. The general
location of the project area is west of Holman Road / Auto Center Drive (South) intersection, south of Hammer Lane, west of State Route 99 (SR 99), and within the northeastern portion of the City of Stockton. The proposed project represents a City General Plan Amendment and Rezone request for the approximately 19.1-acre “Commercial Auto (CA)” zoned project parcel to Medium Density Residential (RM) use.

PROPOSED PROJECT TRIP GENERATION

Project trip generation has been estimated utilizing trip generation rates contained in the Institute of Transportation Engineers (ITE) Publication *Trip Generation (Seventh Edition)*. Table 7 shows the estimated trip generation rates used in this study. Table 8 summarizes the project trip generation volume estimates.

Table 7. Trip Generation Rates

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>ITE Code</th>
<th>Rate Unit</th>
<th>Daily Trip Rate/Unit</th>
<th>Weekday AM Peak Hour Rate/Unit</th>
<th>Weekday PM Peak Hour Rate/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total In% Out%</td>
<td>Total In% Out%</td>
</tr>
<tr>
<td>Residential Condominium</td>
<td>230</td>
<td>Per Dwlg</td>
<td>5.7</td>
<td>0.45 17% 83%</td>
<td>0.53 57% 43%</td>
</tr>
<tr>
<td>Commercial - Auto</td>
<td>641</td>
<td>KSF</td>
<td>33.3</td>
<td>2.05 74% 26%</td>
<td>1.86 39% 61%</td>
</tr>
</tbody>
</table>

Notes:
1. Dwlg = Dwelling Units, KSF = 1,000 Square Feet of Gross Leasable Floor Area
2. The above table indicates "average" trip rates as used in this analysis, consistent with information contained in the ITE Publication *Trip Generation (Seventh Edition)*.

Table 8. Proposed Project Trip Generation Volumes

<table>
<thead>
<tr>
<th>Land Use Description</th>
<th>Quantity</th>
<th>Units</th>
<th>Daily Trips</th>
<th>Weekday AM Peak Hour Trips</th>
<th>Weekday PM Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>Residential Condominium</td>
<td></td>
<td>Dwlg</td>
<td>210</td>
<td>1,206</td>
<td>93</td>
</tr>
<tr>
<td>Total "New" Project</td>
<td></td>
<td></td>
<td>1,206</td>
<td>93</td>
<td>16</td>
</tr>
</tbody>
</table>

Notes:
1. Dwlg = Dwelling Units
2. "Internal-Trip" matching and "Passer-By" trip reductions are not applicable for this project

As shown in Table 8, the proposed project is projected to generate 1,206 "new" daily trips, with 93 AM peak hour trips (16 inbound, 78 outbound) and 110 PM peak hour trips (74 inbound and 36 outbound), that could be characterized as incremental "new" trips on the adjacent off-site street system consisting of Hammer Lane, Holman Road and March Lane.

Since the proposed project represents a Rezone request, trip generation under current Commercial-Auto zoning was also quantified for comparison purposes, and is summarized in Table 9.

Table 9. Currently Zoned Commercial Auto Use Trip Generation Volumes

<table>
<thead>
<tr>
<th>Land Use Description</th>
<th>Units</th>
<th>Quantity</th>
<th>Daily Trips</th>
<th>Weekday AM Peak Hour Trips</th>
<th>Weekday PM Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>Commercial - Auto (CA)</td>
<td>KSF</td>
<td>206*</td>
<td>5,935</td>
<td>426</td>
<td>316</td>
</tr>
<tr>
<td>Total "New" Commercial - Auto (CA)</td>
<td></td>
<td>6,935</td>
<td>426</td>
<td>316</td>
<td>111</td>
</tr>
</tbody>
</table>

Notes:
1. KSF = 1,000 Square Feet
2. * = Total project site is 19.1 Acres = 832 KSF, at 25% buildable gross floor area (GLA) = 208 KSF of GFA
As shown in Table 9, if the proposed 19.1-acre project site were to develop per the currently zoned Commercial Auto uses at a 25% floor area ratio the project site is projected to generate 6,935 "new" daily trips, with 426 AM peak hour trips (316 inbound, 111 outbound) and 387 PM peak hour trips (151 inbound, 236 outbound), that could be characterized as incremental "new" trips on the adjacent off-site street system consisting of Hammer Lane, Holman Road, and March Lane.

Table 10 shows the differences between the estimated traffic generation from the currently zoned Commercial use, and the proposed project use.

<table>
<thead>
<tr>
<th>Land Use Description</th>
<th>Daily Trips</th>
<th>Weekday AM Peak Hour Trips</th>
<th>Weekday PM Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>Residential Condominium/Townhouse (RM)</td>
<td>1,206</td>
<td>93</td>
<td>15</td>
</tr>
<tr>
<td>Total "New" Residential</td>
<td>1,206</td>
<td>93</td>
<td>15</td>
</tr>
<tr>
<td>Commercial - Auto (CA)</td>
<td>6,935</td>
<td>426</td>
<td>316</td>
</tr>
<tr>
<td>Total "New" Commercial - Auto (CA)</td>
<td>6,935</td>
<td>426</td>
<td>316</td>
</tr>
<tr>
<td>Total Difference between RM & CA</td>
<td>-5,729</td>
<td>-333</td>
<td>-300</td>
</tr>
</tbody>
</table>

Note: FAR = Floor Area Ratio

As shown in Table 10, the proposed project uses are projected to generate 1,206 “new” daily trips. The currently zoned Commercial Auto uses are projected to generate 6,935 “new” daily trips at 25% floor area coverage. The difference appears to be a significant net decrease by approximately 5,729 daily trips. In terms of peak hour trips, there is a net decrease in total of 333 AM peak hour trips (300 inbound, 33 outbound) and 277 PM peak hour trips (77 inbound, 200 outbound) between the project traffic generated trips compared to the currently zoned commercial auto uses. Furthermore, a significant reversal in trip directionality is anticipated to occur because the current zoning is commercial use (trip “attractor” use) while the proposed project is predominantly residential (trip “producer” use).

PROJECT TRIP DISTRIBUTION AND ASSIGNMENT

The directional trip distribution and assignment of project-generated trips was estimated based on a review of existing and projected future traffic flows and travel patterns within the vicinity of the project site, location of employment/shopping opportunities in relation to the proposed project site, and use of the City of Stockton traffic model. As part of the traffic study scoping process, the trip distribution estimates were pre-reviewed by City staff and approved for use in this study.

PROJECT SITE ACCESS AND DRIVEWAY INTERSECTIONS

A single major public access roadway/driveway, Auto Center Drive (South), is proposed to serve the project uses. As illustrated on Figure 2, the Auto Center Drive (South) roadway will provide full access to/from the project site. The existing signalized Holman Road/Auto Center Drive (South)/Telstar Plaza intersection is located approximately 0.25 miles (1320 feet) south of Holman Road/Hammer Lane intersection. Residents will gain access to/from the project site via a gated entrance. The project entrance gate would be timed and serve trips in and out of the project such that the queuing at the gate does not back up into the public right-of-way. The greatest number of trips generated by the project site occurs during the PM peak hour period, with 74 trips going into the project site. During the peak hour period, the hourly peak hour arrival rate experienced may be assumed to be twice the average arrival rate (74 * 2 = 148 vehicles). Assuming 148 vehicles arriving at the gate per hour equates to one (1) vehicle approaching every 24-seconds ([(148 * 60) / 24]) = 156 vehicles per hour.
sec/min] / 148 vehicles = 24 seconds/vehicle). Therefore, the gate would be timed to serve at least one (1) vehicle every 24 seconds. Furthermore, the gate would be timed such that when the first vehicle in the queue opens the gate, the gate would stay open for the remaining vehicles in queue to pass through the gate. With a maximum queue of one (1) vehicle at the gate at any peak hour, maximum 25 feet of storage length is projected for the gate entrance. Based on the above analysis, queuing from the project gate or spill-over to the public right-of-way or adjacent easterly Holman Road / Auto Center Drive (South) / Telestar Plaza intersection is not projected.

As illustrated on Figure 2, two Emergency Vehicle Access (EVA) driveways are proposed to gain access to/from the project site via Auto Center Drive (S) road, just east of the project entrance gate. One of the EVA is located north of and the second EVA is located to the south of Auto Center Drive (S) road, just east of the project entrance gate.

Figure 7 illustrates the projected directional trip distribution patterns and assignment paths for project-generated trips. Figure 8 illustrates the estimated "Project Only" traffic volumes.

"EXISTING PLUS APPROVED/PENDING PROJECTS PLUS PROJECT" CONDITIONS

In order to simulate "Existing plus Approved/Pending Projects plus Project" conditions, the proposed residential project-generated trips were incrementally superimposed on top of the BPAP traffic volumes.

The resulting "Existing plus Approved/Pending Projects plus Project" ("BPAP plus Project") traffic volumes are illustrated on Figure 9.

INTERSECTIONS

"Existing plus Approved/Pending Projects plus Project" (BPAP plus Project) intersection operations were quantified under "Existing plus Approved/Pending Projects plus Project" traffic volumes (shown on Figure 9) and BPAP intersection lane geometrics and control (shown on Figure 6). Table 11 presents the resulting intersection LOS.

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection:</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOS</td>
<td>Delay (Sec/Veh)</td>
<td>LOS</td>
</tr>
<tr>
<td>1</td>
<td>Holman Rd / March Ln</td>
<td>Signal</td>
<td>F</td>
<td>113.4</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>Holman Rd / Auto Center Dr (G) / Telstar Pl</td>
<td>Signal</td>
<td>C</td>
<td>30.7</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd / Auto Center Dr (N)</td>
<td>Signal</td>
<td>A</td>
<td>6.7</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>Girard Wy / Pavillion Pkz / Hammer Ln</td>
<td>Signal</td>
<td>B</td>
<td>13.4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Holman Rd / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>36.4</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>Marantha Dr / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>26.8</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>W Frontage Rd / SR 99 SBR / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>22.2</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>E Frontage Rd / SR 99 NBR / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>28.7</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>E Frontage Rd / Hammer Ln (Two Movement Intersection)</td>
<td>Signal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Average control delays (in seconds/vehicle) are indicated for signal-controlled intersections. Sig = Is Project impact considered "Significant" per City TIA guidelines? (Yes/No)
As shown in Table 11, the Holman Road / March Lane intersection is projected to continue to operate at “EPAP plus Project” AM and PM peak hour LOS “B” or worse conditions. The remaining study intersections are projected to operate at AM and PM peak hour LOS “D” or better conditions. The East Frontage Road / Hammer Lane is planned to be a two movement intersection, with no conflicting movements and therefore LOS “A” operations are projected.

Based on a comparison of the results shown in Table 5 and Table 11, the project impacts at the “off-site” study intersections are generally considered not “significant” under “EPAP plus Project” conditions, per City TIA guidelines. All recommended improvements and mitigation measures are discussed in a subsequent section of this report.

ROADWAY SEGMENTS

“Existing plus Approved/Pending Projects plus Project” roadway operations were quantified utilizing roadway ADT-based LOS thresholds presented previously in Table 2. The results are summarized in Table 12.

Table 12. “Existing plus Approved/Pending Projects plus Project” Conditions: Roadway Levels of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Roadway Segment</th>
<th>Existing/Planned Functional Capacity Configuration</th>
<th>Average Daily Traffic (ADT)</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March Ln – west of Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>27,350</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Holman Rd – between March Ln & Auto Center Dr (S)/Telestar Pl</td>
<td>6-Lane-Divided-Arterial</td>
<td>21,620</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd – between Auto Center Dr (S)/Telestar Pl & Hammer Ln</td>
<td>6-Lane-Divided-Arterial</td>
<td>23,130</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>Hammer Ln – between Girard Wy & Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>48,270</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>Hammer Ln – between Holman Rd & Maranatha Dr</td>
<td>8-Lane-Divided-Arterial</td>
<td>44,850</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Auto Center Dr (S) – west of Holman Rd</td>
<td>2-Lane-Divided-Arterial</td>
<td>3,750</td>
<td>A</td>
</tr>
</tbody>
</table>

As shown in Table 12, all of the study roadway segments are projected to operate at “EPAP plus Project” LOS “B” or better conditions on an average daily traffic basis.

CUMULATIVE (YEAR 2025) CONDITIONS

Although the City’s current General Plan does not provide a buildout year, for analysis purposes Year 2025 is generally regarded as the current General Plan buildout year. Within the project study area vicinity, the current General Plan traffic model includes three planned, major conceptual circulation improvements, listed as follows;

- Construction of the March Lane Extension connecting east from the Holman Road / March Lane intersection to SR 99 / West Frontage Road Interchange location.
- Construction of the Maranatha Drive Extension connecting south from Maranatha Drive / Hammer Lane intersection and through March Lane roadway.
- Construction of the Hammer Lane Extension connection cast from East Frontage Road / Hammer Lane intersection.

Given the above listed major circulation improvements, significant traffic re-distributions compared to EPAP and other short-term scenarios are projected under the current General Plan (Year 2025) conditions. EPAP study intersection lane geometrics and control have been generally retained under cumulative conditions in conjunction with the Holman Road / March Lane intersection improvement, as part of the March Lane Extension project.
The Holman Road / March Lane intersection is planned to be modified with the following lane geometrics as part of the March Lane extension project;

- Northbound approach — Dual left, through and a shared through-right-turn lane
- Southbound approach — Dual left, dual through, and a right-turn lane
- Eastbound approach — Dual left, three through, and a shared through-right-turn lane
- Westbound approach — Dual left, three through and a shared through-right-turn lane

Hammer Lane / East Frontage Road intersection is planned to be modified as a three-legged intersection. Hammer Lane forms the east-west legs, and East Frontage Road forms the north leg of this intersection. This signalized intersection will have the following lane geometrics;

- Southbound approach — Single left and a right-turn-lane (East Frontage Road)
- Eastbound approach — Dual left and two through-lane (Hammer Lane)
- Westbound approach — Singe through, and a shared through-right-turn-lane (Hammer Lane)

No other planned or programmed capacity/circulation improvements are known to occur within the project study area.

The “Cumulative Base” traffic volumes were forecasted using the City’s current GP (1990 version) traffic model, and assume current GP buildout within the project study area and vicinity, while assuming development within the proposed project site itself per current zoning (commercial auto use at 25% floor area coverage). The “Cumulative Base plus Project” conditions were then forecasted by first subtracting out the current commercial auto zoning trips from the “Cumulative Base”, and then incrementally superimposing the proposed rezone residential uses project trips.

Figure 10 illustrates the “Cumulative Base (Year 2025)” traffic volumes and Figure 10B illustrates “Cumulative Base (Year 2025)” intersection lane geometrics and control.

“CUMULATIVE BASE (YEAR 2025)” CONDITIONS

“Cumulative Base (Year 2025)” conditions’ intersection and roadway segment operations were quantified and are summarized in this section.

INTERSECTIONS

Table 13 summarizes “Cumulative Base (Year 2025)” intersection operations, quantified using the “Cumulative Base (Year 2025)” traffic volumes (shown on Figure 10), “Cumulative Base (Year 2025)” intersection lane geometrics and control (shown on Figure 10B).

Table 13. “Cumulative Base (Year 2025)” Conditions: Intersection Levels of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOS</td>
<td>Delay (Sec/Veh)</td>
</tr>
<tr>
<td>1</td>
<td>Holman Rd / March Ln</td>
<td>Signal</td>
<td>C</td>
<td>34.1</td>
</tr>
<tr>
<td>2</td>
<td>Holman Rd / Auto Center Dr (S)/Tolstar Pl</td>
<td>Signal</td>
<td>C</td>
<td>33.0</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd / Auto Center Dr (N)</td>
<td>Signal</td>
<td>B</td>
<td>13.0</td>
</tr>
<tr>
<td>4</td>
<td>Girard Wy / Pavilion Plz / Hammer Ln</td>
<td>Signal</td>
<td>B</td>
<td>15.0</td>
</tr>
<tr>
<td>5</td>
<td>Holman Rd / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>36.8</td>
</tr>
<tr>
<td>6</td>
<td>Marantha Dr / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>40.1</td>
</tr>
<tr>
<td>7</td>
<td>W Frontage Rd / SR 99 SBR / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>25.8</td>
</tr>
<tr>
<td>8</td>
<td>E Frontage Rd / SR 99 NBR / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>41.9</td>
</tr>
<tr>
<td>9</td>
<td>E Frontage Rd / Hammer Ln</td>
<td>Signal</td>
<td>B</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Notes: *Average* control delay (in seconds/vehicle) are indicated for signal-controlled intersections.
MONTAGE CONDOMINIUMS TIS, CITY OF STOCKTON

"CUMULATIVE (YEAR 2025)"
LANE GEOMETRICS AND CONTROL

FIGURE 10B
As shown in Table 13, the Holman Road / Auto Center Drive (S) / Telestar Plaza, Holman Road, Holman Road / Auto Center Drive (N), Girardi Way / Pavilion Plaza / Hammer Lane, East Frontage Road / SR 99 Northbound Ramps / Hammer Lane, and the East Frontage Road / Hammer Lane study intersections are projected to operate at “Cumulative Base (Year 2025)” LOS “D” or better operations under both AM and PM peak hour periods. The remaining study intersections are projected to operate at “Cumulative Base (Year 2025)” LOS “E” or worse conditions under AM and/or PM peak hour volumes.

All recommended improvements and mitigation measures are discussed in a subsequent section of this report.

ROADWAY SEGMENTS

“Cumulative Base (Year 2025)” roadway operations under current/planned roadway capacity configurations were quantified utilizing roadway ADT-based LOS thresholds presented in Figure 2. The results are summarized in Table 14.

<table>
<thead>
<tr>
<th>#</th>
<th>Roadway Segment</th>
<th>Year 2025 Planned Functional Capacity Configuration</th>
<th>Average Daily Traffic (ADT)</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March Ln – west of Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>45,360</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>March Ln – east of Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>39,040</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd – between March Ln & Auto Center Dr (S)/Telestar Pl</td>
<td>8-Lane-Divided-Arterial</td>
<td>20,780</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>Holman Rd – between Auto Center Dr (S)/Telestar Pl & Hammer Ln</td>
<td>8-Lane-Divided-Arterial</td>
<td>20,680</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>Hammer Ln – between Girardi Wy & Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>52,020</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>Hammer Ln – between Holman Rd & Maranatha Dr</td>
<td>8-Lane-Divided-Arterial</td>
<td>58,360</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>Auto Center Dr (S) – west of Holman Rd</td>
<td>2-Lane-Divided-Arterial</td>
<td>3,740</td>
<td>A</td>
</tr>
</tbody>
</table>

As shown in Table 14, all study roadway segments are projected to operate at “Cumulative Base (Year 2025)” LOS “C” or better conditions on an average daily traffic volume basis, with the planned March Lane, Hammer Lane, and Maranatha Drive extensions in place.

All recommended improvements and mitigation measures are discussed in a subsequent section of this report.

“CUMULATIVE BASE (YEAR 2025) PLUS PROJECT” CONDITIONS

In order to simulate “Cumulative Base (Year 2025) plus Project” conditions, first the currently commercial auto zoned use (at 25% floor area coverage) trips were subtracted from the “Cumulative Base (Year 2025)” traffic volumes, and then the proposed rezone residential project-generated trips were incrementally superimposed. Note that majority of the project generated trips traveling to/from south on SR 99, south of Hammer Lane interchange will gain access to/from the project site via the planned SR 99 / March Lane extension interchange. The resulting “Cumulative Base (Year 2025) plus Project” traffic volumes are shown on Figure 11.

INTERSECTIONS

“Cumulative Base (Year 2025) plus Project” intersection operations were quantified under “Cumulative Base (Year 2025) plus Project” traffic volumes (shown on Figure 11), “Cumulative Base
(Year 2025)” intersection lane geometrics and control (shown on Figure 10B). Table 15 presents the resulting intersection LOS.

Table 15. “Cumulative Base (Year 2025) plus Project” Conditions: Intersection Level of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOS (Sec/Veh)</td>
<td>LOS (Sec/Veh)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Holman Rd / March Ln</td>
<td>Signal</td>
<td>C</td>
<td>D</td>
<td>51.7 No</td>
</tr>
<tr>
<td>2</td>
<td>Holman Rd / Auto Center Dr (S)/Telestar Pl</td>
<td>Signal</td>
<td>C</td>
<td>C</td>
<td>34.8 No</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd / Auto Center Dr (N)</td>
<td>Signal</td>
<td>B</td>
<td>C</td>
<td>26.4 No</td>
</tr>
<tr>
<td>4</td>
<td>Girardi Wy / Pavilion Plz / Hammer Ln</td>
<td>Signal</td>
<td>B</td>
<td>C</td>
<td>23.1 No</td>
</tr>
<tr>
<td>5</td>
<td>Holman Rd / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>D</td>
<td>50.6 No</td>
</tr>
<tr>
<td>6</td>
<td>Marantha Dr / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>F</td>
<td>83.4 No</td>
</tr>
<tr>
<td>7</td>
<td>W Frontage Rd / SR 99 SBR / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>D</td>
<td>53.7 No</td>
</tr>
<tr>
<td>8</td>
<td>E Frontage Rd / SR 99 NBR / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>D</td>
<td>43.9 No</td>
</tr>
<tr>
<td>9</td>
<td>E Frontage Rd / Hammer Ln</td>
<td>Signal</td>
<td>B</td>
<td>B</td>
<td>12.1 No</td>
</tr>
</tbody>
</table>

Notes: *Average* control delays (in seconds/vehicle) are indicated for signal-controlled intersections. *Sig* is Project Impact considered “Significant” per City TIA guidelines? (Yes/No)

As shown in Table 15, the Holman Road / March Lane, Holman Road / Auto Center Drive (S) / Telestar Plaza, Holman Road / Auto Center Drive (N), Girardi Way / Pavilion Plaza / Hammer Lane, Homan Road / Hammer Lane, West Frontage Road / SR 99 Northbound Ramps / Hammer Lane, and the East Frontage Road / Hammer Lane intersections are projected to operate at “Cumulative Base (Year 2025) plus Project” LOS “D” or better operations under both AM and PM peak hour periods. The remaining study intersections are projected to operate at “Cumulative Base (Year 2025) plus Project” LOS “E” or worse conditions under AM and/or PM peak hour volumes.

Based on a comparison of the results shown in Table 13 and Table 15, the project impacts at the “off-site” study intersections are generally considered not “significant” under cumulative conditions at any of the study intersections per City TIA guidelines.

All recommended improvements and mitigation measures are discussed in a subsequent section of this report.

ROADWAY SEGMENTS

“Cumulative Base (Year 2025) plus Project” roadway operations were also quantified utilizing roadway ADT-based LOS thresholds presented previously in Table 2. The results are summarized in Table 16.

Table 16. “Cumulative Base (Year 2025) plus Project” Conditions: Roadway Level of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Roadway Segment</th>
<th>Year 2025 Planned Functional Capacity Configuration</th>
<th>Average Daily Traffic (ADT)</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March Ln - west of Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>44,810</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>March Ln - east of Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>38,810</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd -- between March Ln & Auto Center Dr (S)/Telestar Pl</td>
<td>8-Lane-Divided-Arterial</td>
<td>20,000</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>Holman Rd -- between Auto Center Dr (S)/Telestar Pl & Hammer Ln</td>
<td>8-Lane-Divided-Arterial</td>
<td>20,110</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>Hammer Ln - between Girardi Wy & Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>51,050</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>Hammer Ln - between Holman Rd & Marantha Dr</td>
<td>8-Lane-Divided-Arterial</td>
<td>55,480</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>Auto Center Dr (S) -- west of Holman Rd</td>
<td>2-Lane-Divided-Arterial</td>
<td>3,800</td>
<td>A</td>
</tr>
</tbody>
</table>
LEGEND:

XXX WEEKDAY AM PEAK HOUR VOLUMES
(XXX) WEEKDAY PM PEAK HOUR VOLUMES
--- --- FUTURE STREET

"CUMULATIVE BASE (YEAR 2025) PLUS PROJECT"
TRAFFIC VOLUMES
As shown in Table 16, all study roadway segments are projected to continue to operate at "Cumulative Base (Year 2025) plus project" LOS "C" or better conditions on an average daily traffic volume basis.

CUMULATIVE (YEAR 2035) CONDITIONS

The proposed new General Plan based long-term planning horizon years that are currently analyzed for traffic modeling purposes include year 2035. At this time, a preliminary version of the proposed new GP "Year 2035" model is available for use. It may be noted that, similar to the current General Plan (1990 version), the proposed new General Plan (year 2035) model also assumes the three planned future conceptual extensions of March Lane, Hammer Lane, and Maranatha Drive. No other planned or programmed capacity/circulation improvements above and beyond those included in the Cumulative Base (Year 2025) analysis, are known to occur within the project study area.

The "Cumulative Base" traffic volumes were forecasted using the City's proposed new General Plan (year 2035) traffic model, and assume proposed new GP buildout within the project study area and vicinity, while assuming development within the proposed project site itself per current zoning (commercial auto use at 25% floor area coverage). The "Cumulative (Year 2035) Base plus Project" conditions were then forecasted by first subtracting out the current commercial auto zoning trips from the "Cumulative (Year 2035) Base", and then incrementally superimposing the proposed rezone residential uses project trips. Figure 12 illustrates the "Cumulative (Year 2035) Base" traffic volumes

"CUMULATIVE (YEAR 2035) BASE" CONDITIONS

"Cumulative (Year 2035) Base" conditions' intersection and roadway segment operations were quantified and are summarized in this section.

INTERSECTIONS

Table 17 summarizes "Cumulative (Year 2035) Base" intersection operations, quantified using the "Cumulative (Year 2035) Base" traffic volumes (shown on Figure 12), "Cumulative Base (Year 2025)" intersection lane geometrics and control (shown on Figure 10B).

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOS</td>
<td>Delay (Sec/Veh)</td>
</tr>
<tr>
<td>1</td>
<td>Holman Rd / March Ln</td>
<td>Signal</td>
<td>D</td>
<td>50.9</td>
</tr>
<tr>
<td>2</td>
<td>Holman Rd / Auto Center Dr (S)/Telstar Pl</td>
<td>Signal</td>
<td>D</td>
<td>36.2</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd / Auto Center Dr (N)</td>
<td>Signal</td>
<td>B</td>
<td>13.1</td>
</tr>
<tr>
<td>4</td>
<td>Girardi Wy / Pavilion Plz / Hammer Ln</td>
<td>Signal</td>
<td>B</td>
<td>16.7</td>
</tr>
<tr>
<td>5</td>
<td>Holman Rd / Hammer Ln</td>
<td>Signal</td>
<td>F</td>
<td>88.2</td>
</tr>
<tr>
<td>6</td>
<td>Maranatha Dr / Hammer Ln</td>
<td>Signal</td>
<td>E</td>
<td>66.2</td>
</tr>
<tr>
<td>7</td>
<td>W Frontage Rd / SR 99 SBR / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>31.5</td>
</tr>
<tr>
<td>8</td>
<td>E Frontage Rd / SR 99 NBR / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>44.1</td>
</tr>
<tr>
<td>9</td>
<td>E Frontage Rd / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Notes: *Average control delays (in seconds/vehicle) are indicated for signal-controlled intersections.*
"CUMULATIVE (YEAR 2035) BASE"

MONTAGE CONDOMINIUMS TIS, CITY OF STOCKTON

TRAFFIC VOLUMES

LEGEND:

XXX WEEKDAY AM PEAK HOUR VOLUMES
(XXX) WEEKDAY PM PEAK HOUR VOLUMES
--- FUTURE STREET

FIGURE 12
As shown in Table 17, the Holman Road / Auto Center Drive (S) / Telestar Plaza, Holman Road / Auto Center Drive (N), Girardi Way / Pavilion Plaza / Hammer Lane, East Frontage Road / SR 99 Northbound Ramps / Hammer Lane, and the East Frontage Road / Hammer Lane intersections are projected to operate at “Cumulative (Year 2035) Base” LOS “D” or better operations under both AM and PM peak hour periods. The remaining study intersections are projected to operate at “Cumulative (Year 2035) Base” LOS “E” or worse conditions under AM and/or PM peak hour volumes.

All recommended improvements and mitigation measures are discussed in a subsequent section of this report.

ROADWAY SEGMENTS

“Cumulative (Year 2035) Base” roadway operations under existing/planned roadway capacity configurations were quantified utilizing roadway ADT-based LOS thresholds presented in Table 2. The results are summarized in Table 18.

<table>
<thead>
<tr>
<th>#</th>
<th>Roadway Segment</th>
<th>Year 2035 Planned Functional Capacity Configuration</th>
<th>Average Daily Traffic (ADT)</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March Ln - west of Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>55,650</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>March Ln - east of Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>51,600</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd - between March Ln & Auto Center Dr (S) / Telestar Pl</td>
<td>6-Lane-Divided-Arterial</td>
<td>35,840</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>Holman Rd - between Auto Center Dr (S) / Telestar Pl & Hammer Ln</td>
<td>6-Lane-Divided-Arterial</td>
<td>38,220</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Hammer Ln - between Girardi Wy & Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>72,230</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>Hammer Ln - between Holman Rd & Maranatha Dr</td>
<td>6-Lane-Divided-Arterial</td>
<td>61,700</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>Auto Center Dr (S) - west of Holman Rd</td>
<td>2-Lane-Divided-Arterial</td>
<td>5,430</td>
<td>A</td>
</tr>
</tbody>
</table>

As shown in Table 18, the Holman Road segment between Girardi Way and Holman Road is projected to experience upwards of 72,230 ADT under “Cumulative (Year 2035) Base”, and operate at LOS “F” conditions. The remaining study roadway segments are projected to operate at “Cumulative (Year 2035) Base” LOS “D” or better conditions on an average daily traffic basis.

All recommended improvements and mitigation measures are discussed in a subsequent section of this report.

“CUMULATIVE (YEAR 2035) BASE PLUS PROJECT” CONDITIONS

In order to simulate “Cumulative Base plus Project” conditions, first the currently commercial auto zoned use (at 25% floor area ratio) generated trips were subtracted from the “Cumulative (Year 2035) Base” traffic volumes, and then the proposed rezone residential project-generated trips were incrementally superimposed. The resulting “Cumulative (Year 2035) Base plus Project” traffic volumes are shown on Figure 13.

INTERSECTIONS

“Cumulative (Year 2035) Base plus Project” intersection operations were quantified under “Cumulative (Year 2035) Base plus Project” traffic volumes (shown on Figure 13) and “Cumulative Base (Year 2025)” intersection lane geometrics and control (shown on Figure 10B). Table 19 presents the resulting intersection LOS.
MONTAGE CONDOMINIUMS TIS, CITY OF STOCKTON

"CUMULATIVE (YEAR 2035) BASE PLUS PROJECT" TRAFFIC VOLUMES

FIGURE 13

LEGEND:

XXX WEEKDAY AM PEAK HOUR VOLUMES
(XXX) WEEKDAY PM PEAK HOUR VOLUMES
---- FUTURE STREET
Table 19. “Cumulative (Year 2035) Base plus Project” Conditions: Intersection Level of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection:</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOS</td>
<td>Delay (Sec/Veh)</td>
<td>LOS</td>
</tr>
<tr>
<td>1</td>
<td>Holman Rd / March Ln</td>
<td>Signal</td>
<td>D</td>
<td>43.5</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>Holman Rd / Auto Center Dr (S) / Telstar Pl</td>
<td>Signal</td>
<td>D</td>
<td>38.8</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd / Auto Center Dr (N)</td>
<td>Signal</td>
<td>B</td>
<td>13.5</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>Girardi Wy / Pavilion Piz / Hammer Ln</td>
<td>Signal</td>
<td>B</td>
<td>16.5</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>Holman Rd / Hammer Ln</td>
<td>Signal</td>
<td>E</td>
<td>73.6</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>Maranatha Dr / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>30.7</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>W Frontage Rd / SR 99 SBR / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>44.0</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>E Frontage Rd / SR 99 NBR / Hammer Ln</td>
<td>Signal</td>
<td>D</td>
<td>44.0</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>E Frontage Rd / Hammer Ln</td>
<td>Signal</td>
<td>C</td>
<td>22.5</td>
<td>C</td>
</tr>
</tbody>
</table>

Notes: *“Average” control delays (in seconds/vehicle) are indicated for signal-controlled intersections.*

Sig = Is Project impact considered “Significant” per City TIA guidelines? (Yes/No)

As shown in Table 19, the Holman Road / March Lane, Holman Road / Auto Center Drive (S) / Telestar Plaza, Holman Road / Auto Center Drive (N), Girardi Way / Pavilion Plaza / Hammer Lane, East Frontage Road / SR 99 Northbound Ramps / Hammer Lane, and the East Frontage Road / Hammer Lane intersections are projected to operate at “Cumulative (Year 2035) Base plus Project” LOS “D” or better operations under both AM and PM peak hour periods. The remaining study intersections are projected to operate at “Cumulative Base plus Project” LOS “E” or worse conditions under AM and/or PM peak hour volumes.

Based on a comparison of the results shown in Table 17 and Table 19, the project impacts are generally considered not “significant” at any of the study intersections under “Cumulative (Year 2035) Base plus Project) conditions, per City TIA guidelines. All recommended improvements and mitigation measures are discussed in a subsequent section of this report.

ROADWAY SEGMENTS

“Cumulative Base (Year 2035) plus Project” roadway operations were quantified utilizing roadway ADT-based LOS thresholds presented previously in Table 2. The results are summarized in Table 20.

Table 20. “Cumulative (Year 2035) Base plus Project” Conditions: Roadway Level of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Roadway Segment</th>
<th>Year 2025 Planned Capacity Configuration</th>
<th>Average Daily Traffic (ADT)</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March Ln – west of Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>55,000</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>March Ln – east of Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>51,430</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Rd – between March Ln & Auto Center Dr (S) / Telstar Pl</td>
<td>6-Lane-Divided-Arterial</td>
<td>33,839</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>Holman Rd – between Auto Center Dr (S) / Telstar Pl & Hammer Ln</td>
<td>6-Lane-Divided-Arterial</td>
<td>34,230</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Hammer Ln – between Girardi Wy & Holman Rd</td>
<td>8-Lane-Divided-Arterial</td>
<td>71,280</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>Hammer Ln – between Holman Rd & Maranatha Dr</td>
<td>8-Lane-Divided-Arterial</td>
<td>80,830</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>Auto Center Dr (S) – west of Holman Rd</td>
<td>2-Lane-Divided-Arterial</td>
<td>5,550</td>
<td>A</td>
</tr>
</tbody>
</table>

As shown in Table 20, the Holman Road segment between Girardi Way and Holman Road is projected to experience upwards of 71,260 ADT under “Cumulative (Year 2035) Base plus Project”, and operate at LOS “E” conditions. The remaining study roadway segments are projected to operate at “Cumulative (Year 2035) Base” LOS “D” or better conditions on an average daily traffic basis. All recommended improvements and mitigation measures are discussed in the following section of this report.
RECOMMENDED IMPROVEMENTS AND MITIGATION MEASURES

This section presents recommended base improvements and mitigation measures at the study intersections and roadway segments, identified based on the analysis results presented in the preceding sections of this report. It is important to note that at this environmental documentation stage, all improvements and mitigation strategies are conceptual “planning-level” recommendations only, and would need to be verified subsequently for their design feasibility, cost-effectiveness, etc. at the appropriate design stages.

Appendix Table 1 presents a “Mitigation Matrix” that summarizes intersection level of service results under all analysis scenarios, both without and with recommended improvements and mitigations. Appendix Table 2 summarizes project “fair-share” percentage responsibilities for “off-site” intersections, as computed using City TIA criteria. Appendix Table 3 summarizes project “fair-share” percentage responsibilities for “off-site” roadways, as computed using City TIA criteria. All LOS calculation worksheets are also included in the Appendix.

EXISTING CONDITIONS IMPROVEMENTS

Intersection Improvements:

Holman Road / March Lane – Under existing volume, lane geometrics and control, this signalized intersection is currently operating at AM and PM peak hour LOS “F” conditions. It appears that this intersection would operate at existing AM and PM peak hour LOS “C” conditions if the southbound approach is re-striped as southbound left, through, through-shared-right, and a right turn-lane.

Table 21 shows a summary of existing intersection levels of service with improvements.

Table 21. “Existing” Improved Conditions: Intersection Level of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LOS</td>
<td>Delay (Sec/Veh)</td>
<td>Warrant Met?</td>
</tr>
<tr>
<td>1</td>
<td>Holman Rd / March Ln</td>
<td>Signal</td>
<td>C</td>
<td>33.6</td>
</tr>
</tbody>
</table>

Roadways Improvements:

No other improvement measures, above and beyond the existing conditions are projected to become necessary under “existing” conditions. The existing roadway facilities are generally projected to provide sufficient capacity to accommodate “existing” traffic volumes.

“EXISTING PLUS APPROVED/PENDING PROJECTS” CONDITIONS

The following improvements are recommended under “Existing plus Approved/Pending Project” (EPAP) conditions’ traffic volumes above and beyond the recommendations under existing conditions.

Intersections Improvements:

Holman Road / March Lane – Under existing volume, lane geometrics and control, this signalized intersection is projected to operating at EPAP AM and PM peak hour LOS “F” conditions. It is
recommended that this intersection be improved with a second northbound left-turn on top of the southbound approach re-striping, recommended under "existing" conditions. With the recommended improvements, this intersection is projected to operate acceptable "EPAP" AM and PM peak hour LOS "D" or better conditions.

Roadway Improvements:

No other improvement measures, above and beyond the existing conditions are projected to become necessary under "EPAP" conditions. The existing roadway facilities are generally projected to provide sufficient capacity to accommodate "EPAP" traffic volumes.

"EXISTING plus APPROVED/PENDING PROJECTS plus PROJECT" CONDITIONS

No other project-specific mitigation measures, above and beyond those recommended under EPAP conditions are generally projected to become necessary under "EPAP plus Project" conditions. The above recommended EPAP improvements are generally projected to provide sufficient capacity to accommodate "EPAP plus Project" traffic volumes.

Intersection Mitigations:

The project impacts at the "off-site" study intersections are generally not considered "significant" at under EPAP conditions per City TIA guidelines. However, the estimated preliminary project fair-share percentages (based on the City of Stockton’s project fair-share criteria) for cost of improvements to the study intersections are presented in Appendix Table 2, for reference purposes.

Table 22 shows a summary of short-term intersection levels of service with improvements. Figure 14 illustrates the recommended short-term intersection lane geometrics and control.

<table>
<thead>
<tr>
<th># Intersection:</th>
<th>Control Type</th>
<th>"Existing" Conditions</th>
<th>"Existing Base plus Project" Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AM Peak Hour LOS Delay</td>
<td>PM Peak Hour LOS Delay</td>
</tr>
<tr>
<td>1 Holman Rd / March Ln</td>
<td>Signal</td>
<td>C 31.5</td>
<td>D 48.6</td>
</tr>
</tbody>
</table>

Notes:

"Average" control delays (in seconds/vehicle) are indicated for signal-controlled intersections.

Project Access Improvements

A single major public access roadway/driveway, Auto Center Drive (South), is proposed to serve the proposed project site. The Auto Center Drive (South) roadway will provide full access to/from the project site. The existing signalized Holman Road/Auto Center Drive (South)/Telstar Plaza intersection is located approximately 0.25 miles (1,320 feet) south of Holman Road/Hammer Lane intersection. Residents will gain access to/from the project site via a gated entrance. The project entrance gate would be timed to serve trips in and out of the project such that any queuing at the gate does not back up into the public right-of-way. Two Emergency Vehicle Access (EVA) driveways are proposed to gain access to/from the project site via Auto Center Drive (S) road, just east of the project entrance gate. One of the EVA is located north of and the second EVA is located to the south of Auto Center Drive (S), just east of the project entrance gate.

Based on a review of the project site plan and the above-described project access plan, no further on-site circulation/access improvements are recommended as part of this study.
Roadway Mitigations:

No other improvement measures, above and beyond the existing conditions are projected to become necessary under "EPAP plus Project" conditions. The existing roadway facilities are generally projected to provide sufficient capacity to accommodate "EPAP plus Project" traffic volumes.
"Cumulative Base (Year 2025)" Conditions

The cumulative (year 2025) conditions were projected based on current General Plan (1990 version) buildout conditions. The planned future March Lane, Hammer Lane, and Maranatha Drive extensions are assumed to be in place, as part of the "Cumulative Base (Year 2025)" conditions. The following intersection improvements are recommended under "Cumulative Base (Year 2025)" conditions above and beyond the recommendations under existing, EPAP, and EPAP plus Project conditions.

Intersection Improvements:

Holman Road / March Lane -- Under "Cumulative Base (Year 2025)" traffic volume, lane geometrics and control, this signalized intersection is projected to operate at PM peak hour LOS "E" conditions. With the recommended improvement under "EPAP" conditions, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" or better operations under "Cumulative Base (Year 2025)" conditions.

Holman Road / Hammer Lane -- Under "Cumulative Base (Year 2025)" traffic volume, existing lane geometrics and control, this signalized intersection is projected to operate at PM peak hour LOS "E" conditions. It is recommended that the northbound right-turn be controlled with an overlap phasing. With the recommended improvement, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" or better operations under "Cumulative Base (Year 2025)" conditions.

Maranatha Drive / Hammer Lane -- Under "Cumulative Base (Year 2025)" traffic volume, lane geometrics and control, this signalized intersection is projected to operating at PM peak hour LOS "F" conditions. It is recommended that the northbound approach be re-striped as dual northbound left-turn, northbound through, and an overlap right-turn and the southbound approach be re-striped as southbound left, through, and a right turn lane. With the recommended improvement, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" or better operations under "Cumulative Base (Year 2025)" conditions.

SR 99 Southbound Ramps / West Frontage Road / Hammer Lane -- Under EPAP lane geometrics and control, this signalized intersection is projected to operate at "Cumulative Base (Year 2025)" LOS "E" conditions under PM peak hour traffic volumes. It is recommended that the northbound right-turn be controlled as an overlap phasing. With the recommended improvement, this intersection is projected to provide acceptable AM and PM peak hour LOS "D" or better operations under "Cumulative Base (Year 2025)" conditions.

Roadway Improvements:

No other improvement measures, above and beyond the existing conditions are projected to become necessary under "Cumulative Base (Year 2025)" conditions. The existing roadway facilities in conjunction with the planned March Lane, Hammer Lane, and Maranatha Drive extensions are generally projected to provide sufficient capacity to accommodate "Cumulative Base (Year 2025)" traffic volumes.

"Cumulative Base (Year 2025) plus Project" Conditions

Intersection Mitigations:

None of the study intersections are generally projected to warrant any mitigation measures under "Cumulative Base (Year 2025) plus Project" conditions, above and beyond those already recommended under "Cumulative Base (Year 2025)" conditions and "EPAP plus Project" conditions.
Although the project impacts at the “off-site” study intersections are generally not considered “significant” under cumulative conditions per City TIA guidelines, the estimated preliminary project fair-share percentages (based on the City of Stockton’s project fair-share criteria) for study intersection improvements are presented in Appendix Table 2, for reference purposes.

Table 23 shows a summary of the mitigated year 2025 intersection levels of service.

Roadway Mitigations:

No other mitigation measures, above and beyond the existing conditions are projected to become necessary under “Cumulative Base (Year 2025) plus Project” conditions. The existing roadway facilities in conjunction with the planned March Lane, Hammer Lane, and Maranatha Drive extensions are generally projected to provide sufficient capacity to accommodate “Cumulative Base (Year 2025) plus Project” traffic volumes.
Figure 15 illustrates the recommended “Cumulative Base (Year 2025)” intersection lane geometrics and control.

Table 23. Mitigated Cumulative (Year 2025) Conditions: Intersection Levels of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection</th>
<th>Control Type</th>
<th>"Cumulative Base (Year 2025)" Conditions</th>
<th>"Cumulative Base (Year 2025) plus Project" Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AM Peak Hr LOS</td>
<td>PM Peak Hr LOS</td>
</tr>
<tr>
<td>1</td>
<td>Holman Rd / March Ln</td>
<td>Signal</td>
<td>C 31.1</td>
<td>D 38.0</td>
</tr>
<tr>
<td>5</td>
<td>Holman Rd / Hammer Ln</td>
<td>Signal</td>
<td>C 34.5</td>
<td>D 53.2</td>
</tr>
<tr>
<td>6</td>
<td>Maranatha Dr / Hammer Ln</td>
<td>Signal</td>
<td>D 35.7</td>
<td>D 48.1</td>
</tr>
<tr>
<td>7</td>
<td>SR 99 SB Ramps / West Frontage Rd / Hammer Ln</td>
<td>Signal</td>
<td>C 24.3</td>
<td>D 52.5</td>
</tr>
</tbody>
</table>

Notes: *Average* control delays (in seconds/vehicle) are indicated for signal-controlled intersections.

Roadway Mitigations:

No other mitigation measures, above and beyond the existing conditions are projected to become necessary under “Cumulative Base (Year 2025) plus Project” conditions. The existing roadway facilities in conjunction with the planned March Lane, Hammer Lane, and Maranatha Drive extensions are generally projected to provide sufficient capacity to accommodate “Cumulative Base (Year 2025) plus Project” traffic volumes.
MONTAGE CONDOMINIUMS TIS, CITY OF STOCKTON

RECOMMENDED CUMULATIVE (YEAR 2025)
LANE GEOMETRICS AND CONTROL

FIGURE 15
“Cumulative (Year 2035) Base” Conditions

Similar to the cumulative base (current General Plan) conditions, the planned future March Lane, Hammer Lane, and Maranatha Drive extension connections are assumed to be in place in the “Cumulative Base (Year 2035)” conditions forecasted using the City’s New General Plan traffic model. The following intersection improvements are projected to be needed under “Cumulative (Year 2035) Base” conditions above and beyond the recommendations under existing, EPAP, EPAP plus Project, and Cumulative Base (Year 2025) conditions.

Intersection Improvements:

The eight-lane divided arterial segment on Hammer Lane between Girardi Way and Holman Road is projected to experience upwards of 72,230 ADT on a daily basis and operate at “Cumulative (Year 2035) Base” LOS “F” conditions. In general, to sustain LOS “D” with an eight-lane section along this section of Hammer Lane, it is recommended that the City of Stockton study strategies such as parallel east-west capacity enhancements between West Lane and SR 99 corridor, enhanced public transit service along Hammer Lane, etc., to help alleviate vehicular traffic demands along Hammer Lane. Widening of this segment to ten-lane arterial segment is not envisioned in the City of Stockton current and proposed new GP because the adjacent lands are fully developed. Better traffic signal coordination with adjacent intersections, limiting mid-block driveway interferences, etc. may be reasonable options to consider in order to alleviate projected cumulative LOS issues through this segment of Hammer Lane between Girardi Way and Holman Road. Given the fully-developed nature of adjacent lands along this corridor, an alternate approach may be for the City of Stockton to consider accepting a lower LOS standard of “E”. The following notes are, however, made:

Holman Road / March Lane – Under Cumulative (Year 2025) lane geometries and control, this signalized intersection is projected to operate at “Cumulative (Year 2035) Base” LOS “F” conditions under PM peak hour traffic volumes. It appears that with the following lane geometries modifications, this intersection would provide acceptable AM and PM peak hour LOS “D” or better operations under “Cumulative Base (Year 2035)” conditions.

- Northbound approach – Dual left, two through and an overlap phased right-turn lane
- Southbound approach – Dual left, two through and an overlap phased right-turn lane
- Eastbound approach – Dual left, three through, and a shared through-right-turn lane
- Westbound approach – Dual left, four through, and a right-turn lane

Holman Road / Hammer Lane – Under existing lane geometries and control, this signalized intersection is projected to operate at “Cumulative (Year 2035) Base” LOS “F” conditions under AM and PM peak hour traffic volumes. In general, to sustain LOS “D” with an eight-lane section along this section of Hammer Lane, it is recommended that the City of Stockton study strategies such as parallel east-west capacity enhancements between West Lane and SR 99 corridor, enhanced public transit service along Hammer Lane, etc. To sustain LOS “D” conditions, it appears that a ten lane arterial section on Hammer Lane through this intersection may be needed under “Cumulative Base (Year 2035)” conditions.

Maranatha Drive / Hammer Lane – Under “Cumulative Base (Year 2035)” traffic volume, Cumulative (Year 2025) lane geometries and control, this signalized intersection is projected to operating at PM peak hour LOS “F” conditions. It is recommended that the eastbound approach be improves as dual left, four through, and a right-turn-lane. With the recommended improvement, this intersection is projected to provide acceptable AM and PM peak hour LOS “D” or better operations under “Cumulative Base (Year 2025)” conditions.
SR 99 Southbound Ramps / West Frontage Road / Hammer Lane — Under Cumulative (year 2025) lane geometrics and control, this signalized intersection is projected to operate at “Cumulative Base (Year 2035)” LOS “E” conditions under PM peak hour traffic volumes. With the recommended improvements under Cumulative (year 2025) conditions, this intersection is projected to provide acceptable AM and PM peak hour LOS “D” or better operations under “Cumulative Base (Year 2035)” conditions.

No other improvement measures, above and beyond the recommended improvements under “Cumulative Base (Year 2025)” conditions are projected to become necessary under “Cumulative Base (Year 2035)” conditions. The recommended improvements under “Cumulative Base (Year 2025)” conditions are generally projected to provide sufficient capacity to accommodate “Cumulative Base (Year 2035) Base” traffic volumes.

Roadway Improvements:

Hammer Lane — between Girardi Way and Holman Road — This eight-lane arterial with left-turn channelization segment is projected to experience upward of 72,230 ADT volume on a daily basis under “Cumulative (Year 2035) Base” conditions. To sustain LOS “D” with an eight-lane segment along this segment of Hammer Lane, it is recommended that the City of Stockton study strategies such as additional parallel east-west capacity enhancement possibilities between West Lane and SR 99 corridor to help alleviate traffic demands along Hammer Lane. Should alternative strategies be not feasible, then in order to sustain LOS “D” or better operations under “Cumulative (Year 2035) Base” traffic volumes, it appears that a ten-lane cross section along this segment of Hammer Lane may be needed.

No other improvement measures, above and beyond the existing conditions are projected to become necessary under “Cumulative (Year 2035) Base” conditions. The existing roadway facilities in conjunction with the planned March Lane, Hammer Lane, and Maranatha Drive extensions are generally projected to provide sufficient capacity to accommodate “Cumulative (Year 2035) Base” traffic volumes.

“Cumulative (Year 2035) Base plus Project” Conditions

Intersection Mitigations:

None of the study intersections are generally projected to warrant any mitigation measures under “Cumulative (Year 2035) Base plus Project” conditions, above and beyond those already recommended under “Cumulative (Year 2035) Base” conditions and “BPAP plus Project” conditions. Although the project impacts at the “off-site” study intersections are generally not considered “significant” under cumulative conditions per City TIA guidelines, the estimated preliminary project fair-share percentages (based on the City of Stockton’s project fair-share criteria) for study intersection improvements are presented in Appendix Table 2, for reference purposes.

Table 24 shows a summary of the mitigated year 2035 intersection levels of service. Figure 16 illustrates the recommended “Cumulative (Year 2035) Base plus Project” intersection lane geometrics and control.
Table 24. Mitigated Cumulative (Year 2035) Conditions: Intersection Levels of Service

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection:</th>
<th>Control Type</th>
<th>"Cumulative (Year 2035) Base" Conditions</th>
<th>"Cumulative (Year 2035) Base plus Project" Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AM Peak Hr LOS Delay</td>
<td>PM Peak Hr LOS Delay</td>
</tr>
<tr>
<td>1</td>
<td>Holman Rd / March Ln</td>
<td>Signal</td>
<td>C 35.9 D 54.6</td>
<td>D 35.1 D 52.7</td>
</tr>
<tr>
<td>5</td>
<td>Holman Rd / Hammer Ln</td>
<td>Signal</td>
<td>D 35.2 D 54.8</td>
<td>D 35.6 D 51.0</td>
</tr>
<tr>
<td>6</td>
<td>Maranatha Dr / Hammer Ln</td>
<td>Signal</td>
<td>D 41.2 D 53.1</td>
<td>D 40.8 D 51.7</td>
</tr>
<tr>
<td>7</td>
<td>SR 99 SB Ramps / West Frontage Rd / Hammer Ln</td>
<td>Signal</td>
<td>C 26.3 D 52.5</td>
<td>C 25.3 D 49.6</td>
</tr>
</tbody>
</table>

Notes: "Average" control delays (in seconds/vehicle) are indicated for signal-controlled intersections.

Roadway Mitigations:

No other mitigation measures, above and beyond the recommended "Cumulative (Year 2035) Base" conditions are projected to become necessary under "Cumulative (Year 2035) Base plus Project" conditions. The recommended "Cumulative (Year 2035) Base" roadway facilities in conjunction with the planned March Lane, Hammer Lane, and Maranatha Drive extensions are generally projected to provide sufficient capacity to accommodate "Cumulative (Year 2035) Base plus Project" traffic volumes.
MONTAGE CONDOMINIUMS TIS, CITY OF STOCKTON

RECOMMENDED CUMULATIVE (YEAR 2035) LANE GEOMETRICS AND CONTROL
Lori, if you are available Tuesday, maybe after or during our one on one meeting, I would like to call Steve Herum regarding the mobile home park GPA project. Please let me know if that works for you. I will schedule it with Steve H tomorrow if that works. Thanks, David
Fyi for mobile home park

Allison found the documents for us!

G:\CDD\priv\LIBRARY\CEQA and IS DOCUMENTS\Montage Condominiums
Lori, do you have time to talk this afternoon regarding an email I am drafting to Steve Herum. It’s regarding CEQA and CEQA work needed on the proposed mobile home park at Telstar. I’ll have a draft to you in an hour or so. Also would like for you to join me in a call to Steve Herum afterwards. This assumes (Scott and Kurt have approved my communications and informed the Mayor’s office. Also hoping you can touch bases with John L to make sure he is ok with it or have any different ideas. Thanks, David

From: Lori Asuncion <Lori.Asuncion@stocktonca.gov>
Sent: Wednesday, April 10, 2019 4:20 PM
To: David Kwong <David.Kwong@stocktonca.gov>
Cc: Michael McDowell <Michael.McDowell@stocktonca.gov>; Stephanie Ocasio <Stephanie.Ocasio@stocktonca.gov>
Subject: FYI

David,

As a reminder from our conversation last week, I am out of the office tomorrow and unavailable the first half of the day. I will be checking and responding to email as I am able.

Lori Asuncion

Lori Asuncion
Assistant City Attorney
Office of the City Attorney
CITY OF STOCKTON
425 N. El Dorado Street, 2nd Floor
Stockton, CA 95202-1997
(209) 937-8936
Lori.Asuncion@stocktonca.gov

This email transmission and any documents, files or previous email messages attached to it may contain confidential information that is legally privileged and is intended for the designated recipient only. Recipients should not file copies of this e-mail with publicly accessible written or electronic records. If you have received this email in error, please notify us immediately by telephone at the number shown above. Thank you.
Steve, thank you for the phone call this morning. I wanted to confirm our discussions that you would like for the city to initiate a general plan amendment on your client’s behalf to further the 16 acre manufactured home (mobile home park) site off of Holman and Telstar. My staff and I are working on this question and I will communicate further with you on this proposal by the end of the week. Specifically the general plan amendment will be to amend the site’s land use designation from low density to medium density. I believe you were also going to provide some follow up calculations on the number of units that would located on the site after calculating the street (telstar) back into the project.

Respectfully, David
Ms. Olsen:

I am not aware of any particular procedure that would involve the City of Stockton for a mobile home park owner to sell, convert, or close the park, other than any related zoning or subdivision application that might be required. For example, if the park were to be closed and the land rezoned to another use, then a public hearing process would be held by the City’s Planning Commission and City Council. However, if the park were closed and the land re-used in a way that did not require subdivision, a zoning permit, or rezoning, then we might not require any special notice or hearing process.

As a practical matter, I’m not aware of any mobile home parks attempting to close or do any of these things over the past couple of years.

Thomas S. Pace
Deputy Community Development Director
City of Stockton
Community Development Department
345 N. El Dorado Street
Stockton, CA 95202
Direct: (209) 937-8446

From: Heather Olsen [mailto:heatherolsen@u.boisestate.edu]
Sent: Wednesday, March 29, 2017 6:55 PM
To: David Tolliver <David.Tolliver@stocktonca.gov>
Subject: mobile home living study at Boise State University

Hello Mr. Tolliver,

I am unsure if you might be the right person to contact about this, but hopefully you can point me in the right direction if not.

My name is Heather Olsen and I'm a graduate student in the master's of public administration program at Boise State University. I, along with four of my colleagues, are compiling a report on mobile home living in our area. I am doing a comparative policy study of five western cities similar in population size, median income, cost of living, and cost of housing. Stockton is one of our comparison cities.

I have already done research on the state's mobile home residency law and have also located the city's housing plans. Today I spoke to the San Joaquin Housing Authority, but they did not think they had information related to my team's subject. Specifically, we are looking at trends in mobile home park closures and sales that displace home owners. California state statute indicates that a park owner must notify home owners that they are going to appear before a local government, board, or commission to get approval to sell, convert, or close the park.

Statute seemed to indicate that local permits were not required, but is generally the cases in most cities in California. Can you tell me if Stockton requires park owners to go through this approval process before listing a park for sale or closing it? Additionally, are there any issues around mobile home living or park closures specifically in Stockton that might be of interest to us?
I would greatly appreciate any direction you can give us in terms of resources, data in regards to mobile home park closures, etc. Thank you in advance for your time.

Thank you,
Heather Olsen
MPA student
Boise State University
Connie Cochran

From: David Tolliver
Sent: Thursday, March 30, 2017 10:01 AM
To: Heather Olsen
Subject: RE: mobile home living study at Boise State University

Very good!

From: Heather Olsen [mailto:heatherolsen@u.boisestate.edu]
Sent: Thursday, March 30, 2017 9:57 AM
To: David Tolliver <David.Tolliver@stocktonca.gov>
Subject: Re: mobile home living study at Boise State University

Thanks! I must have not sent the follow up from last night saying I found Lorraine Islas' contact information right after I emailed you, and she got right back to me. So I think I'm good! Thank you!

~Heather

On Thu, Mar 30, 2017 at 10:42 AM David Tolliver <David.Tolliver@stocktonca.gov> wrote:

Hi Heather,

As a fellow graduate student, I want to thank you for reaching out. I am not sure how to answer your questions best and I have passed it on to our Planning Division Director and Business Operations Director. I’m certain they will have a more informed answer.

Full disclosure: Today is my last day with the department as I am moving over to our Community Services Department. However, I want to make sure you get what you need. If you don’t hear from the Community Development Department in a week, please let me know and I’ll follow up.

I wish you – and your group – much success in your project and schooling in general.

Best Regards,

David
Hello Mr. Tolliver,

I am unsure if you might be the right person to contact about this, but hopefully you can point me in the right direction if not.

My name is Heather Olsen and I'm a graduate student in the master's of public administration program at Boise State University. I, along with four of my colleagues, are compiling a report on mobile home living in our area. I am doing a comparative policy study of five western cities similar in population size, median income, cost of living, and cost of housing. Stockton is one of our comparison cities.

I have already done research on the state's mobile home residency law and have also located the city's housing plans. Today I spoke to the San Joaquin Housing Authority, but they did not think they had information related to my team's subject. Specifically, we are looking at trends in mobile home park closures and sales that displace home owners. California state statute indicates that a park owner must notify home owners that they are going to appear before a local government, board, or commission to get approval to sell, convert, or close the park. Statute seemed to indicate that local permits were not required, but is generally the cases in most cities in California. Can you tell me if Stockton requires park owners to go through this approval process before listing a park for sale or closing it? Additionally, are there any issues around mobile home living or park closures specifically in Stockton that might be of interest to us?

I would greatly appreciate any direction you can give us in terms of resources, data in regards to mobile home park closures, etc. Thank you in advance for your time.

Thank you,
Heather Olsen
MPA student
Boise State University
Hello All,

Sorry for the delay, but to summarize traffic comments. The comments below will be sent to our consultant, so please edit if I missed something. Even/Doggie, if ok, I was going to attach your comments for our Rincon team.

Thanks again everyone for the fast turnaround.

VMT
- The conclusion should be tiered from City 15% reduction baseline (CAP, EGEIR) and not the COGs.
- VMT defined criteria for impacts (i.e. per capita) should be based on households per OPR guidelines. The current plan uses population. I will see if there are any threshold outlines in the CAP or GPEIR associated traffic studies.
- We can include a COG comparison to cover that discussion, but the emphasis should be on the City’s adopted 15% baseline.
 - For VMT/trip calculations, we should assume MDR based on the proposed general plan amendment (LDR to MDR). While mobile homes may be calculated as single-family homes, the site’s medium density designation should drive the mobile home conversation to be considered an allowable medium density use.

LOS (see attached)
- Needs intersection analysis
- (comment about update traffic signal)- is that for this project? Do we have the authority for offsite improvements?
- Other comments attached.

Other
- The CEQA thresholds should focus on VMT. Traffic will definitely come up in the meeting, but most probably do not understand VMT enough to comment. Our analysis should be strong enough to stand a challenge and counter-study should the opposition team get that far.

For the City of Stockton Updates on COVID-19, please visit:
Twitter @stocktonUpdates
Facebook @CityofStockton
City Website http://www.stocktonca.gov
CAUTION: This email originated from outside the City of Stockton. Do not click any links or open attachments if this is unsolicited email.

So it’s fresh in your inbox - gateway adjustments memo for the model.

Kari McNickle
Senior Transportation Planner
D 925.357.3374 | C 209.406.3951
k.mcnickle@fehrandpeers.com
February 8, 2021

To: Rincon Consultants
Project: Stockton Auto Center Circle Mobile Home Project

From: Todd Tregenza, AICP
Rosanna Southern, EIT
Ref/Job No.: 11222590

CC: City of Stockton
File No.: 11222590-MEM001.DOCX

Subject: Traffic Impact Analysis and Supplemental Operational Analysis

1. Introduction

The City of Stockton has tasked GHD, Inc., sub-consultant to Rincon Consultants, with performing a vehicle miles traveled (VMT) impact analysis and operational analysis of the proposed Stockton Auto Center Circle Mobile Home Park development, hereafter referred to as the “Project”, pursuant to SB 743 and local policy. Under SB 743, Level of Service (LOS) is no longer considered as the metric for environmental transportation impacts under the California Environmental Quality Act (CEQA), but rather VMT. This memorandum also includes traffic operational analysis results with LOS as the metric, consistent with City of Stockton Transportation Impact Analysis Guidelines (2003).

The proposed Project, which consists of 316 mobile home dwelling units, is in the northeastern portion of the City on a currently vacant property west of Holman Road at Auto Center Circle. Single-family homes abut the Project site to the south. The Stockton Auto Mall and related auto-oriented/commercial land uses are located to the north of the Project site. Automobile dealerships abut the Project’s eastern boundary and front Holman Road. This Project will require a General Plan amendment and proposes to change the Project site’s land use designation from Low Density Residential to Medium Density Residential. Figure 1.1 presents the study area map and project location.

This technical memorandum has been prepared to conduct the transportation impact analysis for the proposed project, document the technical data and methodologies utilized in the VMT and LOS analyses, and serve as a technical supplement to the environmental document. As part of this study, GHD has reviewed available guidance and documentation from the City of Stockton to identify any draft or advisory VMT baseline estimates and/or threshold recommendations. In coordination with City staff, and absent adopted or guiding threshold values, GHD has presumed a reduction of 15% below regional baseline as the VMT impact threshold consistent with the Governor’s Office of Planning and Research (OPR) Technical Advisory On Evaluating Transportation Impacts in CEQA (December 2018) and CEQA guidelines. Based on coordination with the City of Stockton, the San Joaquin Council of Governments Regional Travel Demand Model (SJC DG RTDM, 2019) was utilized to estimate baseline and project-level VMT per capita.
2. **VMT Regulatory Framework & Methodology**

SB 743 was signed into law in 2013, with the intent to better align California Environmental Quality Act (CEQA) practices with statewide sustainability goals related to efficient land use, greater multi-modal choices, and greenhouse gas reductions. The provisions of SB 743 became effective statewide on July 1, 2020. Under SB 743, automobile delay, traditionally measured as level of service (LOS), is no longer considered an environmental impact under CEQA. Instead, impacts are determined by changes to VMT.

VMT measures the number and length of vehicle trips made on a daily basis. VMT is a useful indicator of overall land use and transportation efficiency, where the most efficient system is one that minimizes VMT by encouraging shorter vehicle trip lengths, more walking and biking, or increased carpooling and transit. Measuring VMT requires estimating or measuring the full length of vehicle trips by purpose, such as commute trips or shopping trips that often cross between cities, counties, or states. For this reason, regional travel demand models, “big data,” and household travel surveys that are less limited by local agency boundaries are the preferred tools to estimate VMT under SB 743.

2.1 **VMT Threshold**

In December 2018, OPR released its *Technical Advisory on Evaluating Transportation Impacts in CEQA* (OPR’s Technical Advisory). OPR’s Technical Advisory identifies recommended VMT thresholds for different land use types, and screening criteria. Generally, OPR recommends a reduction of 15% or more in Baseline VMT per capita as the impact threshold for residential-based developments, as stated below. Residential development that would generate vehicle travel that is 15 or more percent below the existing residential VMT per capita, measured against the region or city, may indicate a less-than-significant transportation impact.

“**Recommended threshold for residential projects:** A proposed project exceeding a level of 15 percent below existing VMT per capita may indicate a significant transportation impact. Existing VMT per capita may be measured as regional VMT per capita or as city VMT per capita. Proposed development referencing a threshold based on city VMT per capita (rather than regional VMT per capita) should not cumulatively exceed the number of units specified in the Sustainable Communities Strategy (SCS) for that city, and should be consistent with the SCS.”

The City of Stockton 2018 Adopted General Plan makes reference to SB 743, and the need to measure the traffic impacts of future projects with VMT as a significance metric. However, the City has yet to establish VMT guidance and significance thresholds. The City is currently in the process of establishing VMT guidance and/or policies for implementing SB 743. In coordination with the City of Stockton, and in absence of adopted or guiding VMT threshold values for the City, the VMT analysis utilizes the recommended threshold of 15% below baseline (existing) regional VMT per capita for Project impact determination.

2.2 **OPR Recommended Screening Thresholds**

OPR’s Technical Advisory lists the following screening thresholds for land use projects. These types of development projects are presumed to have a less than significant impact on VMT and therefore, a less than significant adverse impact on transportation. OPR’s Technical Advisory suggests that lead agencies may screen out VMT impacts using project size, maps, transit availability, and provision of affordable housing.
Projects that are consistent with the Sustainable Communities Strategy (SCS) or General Plan and generate or attract fewer than 110 daily trips (per CEQA).

Map-based screening for residential and office projects located in low VMT areas, and incorporate similar features (density, mix of uses, transit accessibility).

Certain projects within ½ mile of either an existing major transit stop\(^1\) or an existing stop along a high-quality transit corridor\(^2\) (CEQA Guidelines Section 15064.3, subdivision (b)(1)). However, this will not apply if information indicates that the project will still generate high levels of VMT.

Affordable Housing Development in infill locations.

Locally-serving retail projects, typically less than 50,000 square feet (does not apply to this Project).

The proposed Project is considered affordable housing, and it is in an infill location. OPR’s Technical Advisory has the following criteria for screening affordable housing:

Presumption of Less Than Significant Impact for Affordable Residential Development

> “Adding affordable housing to infill locations generally improves jobs-housing match, in turn shortening commutes and reducing VMT. Further, “… low-wage workers in particular would be more likely to choose a residential location close to their workplace, if one is available.”\(^3\) In areas where existing jobs-housing match is closer to optimal, low income housing nevertheless generates less VMT than market-rate housing. Therefore, a project consisting of a high percentage of affordable housing may be a basis for the lead agency to find a less-than-significant impact on VMT. Evidence supports a presumption of less than significant impact for a 100 percent affordable residential development (or the residential component of a mixed-use development) in infill locations. Lead agencies may develop their own presumption of less than significant impact for residential projects (or residential portions of mixed-use projects) containing a particular amount of affordable housing, based on local circumstances and evidence. Furthermore, a project which includes any affordable residential units may factor the effect of the affordability on VMT into the assessment of VMT generated by those units.”

The proposed Project could be presumed to have a less than significant impact on VMT, under OPR’s Technical Advisory, due to it being 100 percent affordable housing in an infill location. However, the City has not identified these criteria based on local circumstances and evidence. Additionally, the Project is located within a ½ mile of an existing stop along a high-quality transit corridor. San Joaquin Regional Transit District maintains and operates fixed bus Route 43, which has a stop at Hammer Lane and Holman Road, and has 14-15 minute headways in both directions during peak commute hours. Therefore, this Project could be presumed to cause a less than significant transportation impact, under OPR’s Technical Advisory. However,

1 “major transit stop” - A major transit stop is a “site containing an existing rail, a ferry terminal served by bus or rail transit service, or intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during morning and evening peak hour commute”. OPR, 2018.

2 Pub. Resources Code, § 21155 (“For purposes of this section, a high-quality transit corridor means a corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.”).

for thoroughness, a VMT impact analysis has been performed to confirm if the project-specific or location-specific information would generate significant levels of VMT.

2.3 CEQA Baseline Considerations

Under CEQA, project impacts must be evaluated by comparing environmental conditions after project implementation to conditions at a point in time referred to as the baseline. The CEQA Guidelines Section 15125 provides the following guidance for establishing the baseline:

“An EIR must include a description of the physical environmental conditions in the vicinity of the project. This environmental setting will normally constitute the baseline physical conditions by which a lead agency determines whether an impact is significant. [...] The purpose of this requirement is to give the public and decision makers the most accurate and understandable picture practically possible of the project’s likely near-term and long-term impacts.”

The CEQA Guidelines goes on to state that generally, the baseline is the environmental condition that exists at the time the notice of preparation is published or environmental analysis is commenced, from both a local and regional perspective. However, a lead agency may define the baseline by referencing historic conditions, as long as substantial evidence is provided that such a baseline is necessary to provide the most accurate picture practically possible of the project’s impacts given that existing conditions change or fluctuate over time.

The baseline provided in this memorandum is estimated for the region, from the most recently updated SJCOG Travel Demand Model.

2.4 VMT Methodology

2.4.1 City of Stockton Model

The City of Stockton General Plan Travel Demand Model (Stockton Model, 2017) is a trip-based model that utilizes the traditional four-step travel demand modelling method, a standard modelling process that uses land use inputs to determine trip generations and attractions, trip distribution, mode choice, and trip assignment. This model was considered for estimation of baseline VMT and project-level VMT estimates. However, the model boundary is limited by the City’s planning area (General Plan area) and does not account for the full length of trips with origins and destinations outside of the model boundary.

2.4.2 SJCOG Regional Travel Demand Model

The baseline provided in this memorandum is estimated from the most recently updated SJCOG Regional Travel Demand Model (SJCOG RTDM, VMIP-2, 2019), which has a base year of 2015 and a forecast year of 2045. The SJCOG RTDM utilizes the traditional four-step travel demand modelling method, and covers San Joaquin County, Merced County, and Stanislaus County. This tri-county model processes land use data to produce trips by different trip purposes and modes. It outputs VMT throughout the model boundary and represents interregional travel. The SJCOG Model base year 2015 was utilized to estimate regional baseline Residential VMT, including cities. To estimate trips associated with Residential VMT, all home-based
vehicular trips were selected for a trip-based evaluation of VMT. The model’s socioeconomic inputs were utilized to estimate regional population and calculate VMT per capita.

County External Trips

The SJCOG model inputs and trip purposes for evaluation of VMT is limited to the boundary of the model area. To estimate baseline VMT, the total trip lengths of trips with origins or destinations outside of the model boundary must be accounted for. Each of the model’s external gateways has an assigned link distance, and accurately represents the average distance travelled for trips beyond the model boundary, based on local and interregional commute patterns and census data. By accounting for the assigned link distances, the baseline VMT calculation includes the full trip lengths of internal-external and external-internal trips.

Project-Level VMT

Project-level VMT was estimated using the SJCOG model, based on the average length of residential-based trips from the traffic analysis zone (TAZ) containing the Project site. Then the trip generation, calculated in this memorandum, was multiplied by this average trip length to determine the total Project VMT. The total VMT was divided by the estimated Project population to arrive at the VMT per capita.

3. Project Description

The Project proposes to develop a mobile home park at an approximately 18.52-acre site, consisting of three vacant parcels located at the western terminus of Auto Center Circle (private street), and 316 dwelling units per the Site Plan. Figure 3.1 presents the project Site Plan.

3.1 Project Site Access

The proposed site will provide one main access point via Auto Center Circle, through a gated access at the eastern border of the Project site, and a secondary access further east than the gated access. Several driveways within the Project site along Auto Center Circle will provide access to parking areas interior to the development. The Site Plan also shows on-street parking along Auto Center Circle.
Phase 1, 51 lots

Phase 2, 95 lots

Phase 3, 170 lots
3.2 Trip Generation

Project trip generation has been estimated for the total number of dwelling units, 316 per the Site Plan. The daily and peak hour trip generation estimations were achieved by utilizing the Institute of Transportation Engineers (ITE) publication *Trip Generation Manual (10th Ed.)*. Trip rates for the 316 dwelling units used the Land Use Code 240 for Mobile Home Park. In addition to the proposed Project, an estimation of trips generated for the current General Plan land use and zoning designation has been included for comparison. The current General Plan land use and zoning designation for the project site is Low Density Residential, which has a maximum density of 8.7 dwelling units per acre per the City’s Municipal Code. Based on the site size of 18.52 acres, an estimated 161 single-family dwelling units would be allowed within the Low Density Residential designation.

Table 3.1 presents the Project trip generation, the trip generation under General Plan land use and zoning, and the difference between the two. As shown, the Project trip generation is 1,580 daily trips, 82 trips in the AM peak hour, and 145 trips in the PM peak hour. The Project is estimated to generate approximately 60 additional daily trips compared to the General Plan land use.

Table 3.1 Project Trip Generation

<table>
<thead>
<tr>
<th>Land Use Category (ITE Code)</th>
<th>Unit^1</th>
<th>Daily Trip Rate/Unit^2</th>
<th>AM Peak Hour Trip Rate/Unit</th>
<th>PM Peak Hour Trip Rate/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>In %</td>
<td>Out %</td>
</tr>
<tr>
<td>Single-Family Detached Housing (210)</td>
<td>DU</td>
<td>9.44</td>
<td>0.74</td>
<td>25%</td>
</tr>
<tr>
<td>Mobile Home Park (240)</td>
<td>DU</td>
<td>5.00</td>
<td>0.26</td>
<td>31%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Quantity (Units)</th>
<th>Daily Trips</th>
<th>AM Peak Hour Trips</th>
<th>PM Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Plan Land Use (Low Density Residential)</td>
<td>161</td>
<td>1,520</td>
<td>119</td>
<td>159</td>
</tr>
<tr>
<td>Mobile Home Park</td>
<td>316</td>
<td>1,580</td>
<td>82</td>
<td>145</td>
</tr>
<tr>
<td>Comparison Between Land Uses</td>
<td>155</td>
<td>60</td>
<td>-37</td>
<td>-14</td>
</tr>
</tbody>
</table>

Notes:
1. 1 ksf = 1,000 square feet DU = dwelling unit
2. Trip rates based on ITE Trip Generation Manual 10th edition average rates

3.3 Trip Distribution & Assignment

The trip distribution and assignment described below are used only for the operational (LOS) analysis. Existing average daily traffic (ADT) volumes presented in the General Plan EIR were used to estimate the portion of trips travelling in each direction to and from the Project site and along the study roadway segments. Figure 3.2 presents the trip distribution for the Project-generated trips.
Upgrade the traffic signal equipment to today's standard and install vehicle pre-emption (Opticom system)

Telstar should pick up some percentage too.
To calculate trip assignment, the trip distribution was applied to the estimated Project trip generation to determine the Project trips that travel in each direction. Table 3.2 presents the project-generated trips assigned to the adjacent roadways, for both Existing and Cumulative scenarios.

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Location</th>
<th>% Distribution</th>
<th>Existing</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holman Road</td>
<td>south of Auto Center Circle*</td>
<td>10%</td>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>Holman Road</td>
<td>north of Auto Center Circle</td>
<td>90%</td>
<td>1,420</td>
<td>55</td>
</tr>
<tr>
<td>Hammer Lane</td>
<td>west of Holman Road</td>
<td>35%</td>
<td>550</td>
<td>20</td>
</tr>
<tr>
<td>Hammer Lane</td>
<td>east of Holman Road</td>
<td>36%</td>
<td>570</td>
<td>25</td>
</tr>
<tr>
<td>Holman Road</td>
<td>north of Hammer Lane*</td>
<td>19%</td>
<td>300</td>
<td>10</td>
</tr>
</tbody>
</table>

*Not a study segment, but shown for reference of distributed trips.

These Project trips were superimposed onto the Existing conditions (2020) traffic volumes to derive the Existing Plus Project traffic volumes. The General Plan’s Cumulative (2040) scenario already assumes the Project site would be used for Low Density Residential dwelling units, so to calculate the Cumulative Plus Project traffic volumes on the adjacent roadway segments, the volumes generated by the previously-assumed General Plan land use had to be subtracted from the Cumulative No Project conditions ADT prior to superimposing the added Project trips. The Project trip values for Cumulative conditions shown in Table 3.2 represent the net change in roadway volume that result from this calculation.

4. **VMT Analysis**

This section presents the various findings of the VMT analyses conducted, based on the methodologies previously described, to evaluate and estimate baseline VMT.

4.1 **Baseline VMT**

Regional Baseline VMT, population, and VMT per capita information from the SJCOG model is provided in Table 4.1.

<table>
<thead>
<tr>
<th>SJCOG Model (Regional)</th>
<th>Total VMT</th>
<th>Population</th>
<th>VMT per Capita</th>
<th>15% Below Baseline Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJCOG Model (Regional)</td>
<td>18,784,680</td>
<td>627,371</td>
<td>29.9</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Based on the Regional model, the Baseline VMT per capita is 29.9 (including Cities), and the 15% below regional baseline threshold for determining Project impact significance is 25.5 VMT per capita.

4.2 **Project VMT**

Project total VMT is determined by multiplying the Project’s trip generation by the average trip length of the model TAZ where the Project is located. The Project population was estimated based on the General Plan rate for average persons per household in the City of Stockton (3.23 persons per household). The total VMT divided by the estimated Project population yields the Project’s estimated VMT per capita, which is
compared to the regional threshold to determine impact significance. Table 4.2 presents the Project’s VMT evaluation and estimated VMT per capita compared to the regional threshold.

Table 4.2 Project-Level VMT

<table>
<thead>
<tr>
<th>Project Trips</th>
<th>Average Trip Length (mi)</th>
<th>Project Total VMT</th>
<th>Population</th>
<th>Project VMT per Capita</th>
<th>SJCOG Model Regional Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,580</td>
<td>14.3</td>
<td>22,594</td>
<td>1,021</td>
<td>22.1</td>
<td>25.5</td>
</tr>
</tbody>
</table>

As shown, the Project VMT per capita of 22.1 is lower than the estimated Regional threshold, and is presumed to cause a less than significant transportation impact.

5. LOS Analysis Parameters & Methodologies

5.1 Level of Service (LOS) Methodologies

Traffic operations were quantified through the determination of “Level of Service” (LOS). Level of Service is a qualitative measure of traffic operating conditions, whereby a letter grade “A” through “F” is assigned to an intersection, or roadway segment, representing progressively worsening traffic conditions. LOS “A” represents free-flow operating conditions and LOS “F” represents over-capacity conditions. Levels of Service was calculated for all study locations using the methods documented in the Transportation Research Board Publication *Highway Capacity Manual, Sixth Edition, A Guide for Multimodal Mobility Analysis, 2016* (HCM 6).

Table 5.1, presents the LOS traffic volume thresholds in terms of bi-directional average daily traffic (ADT). These thresholds are found in the *Envision Stockton 2040 General Plan Update and Utility Master Plan Supplements Final EIR and Mitigation Monitoring and Reporting Program.*
Table 5.1 Level of Service (LOS) Criteria for Roadways

<table>
<thead>
<tr>
<th>Facility Class & Lanes</th>
<th>Two-way Average Daily Traffic (ADT) Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS A</td>
</tr>
<tr>
<td>6-Lane Freeway</td>
<td><41,400</td>
</tr>
<tr>
<td>4-Lane Freeway</td>
<td><27,600</td>
</tr>
<tr>
<td>8-Lane Arterial</td>
<td><38,100</td>
</tr>
<tr>
<td>6-Lane Arterial</td>
<td><28,800</td>
</tr>
<tr>
<td>4-Lane Arterial</td>
<td><18,600</td>
</tr>
<tr>
<td>2-Lane Arterial</td>
<td><8,400</td>
</tr>
<tr>
<td>4-Lane Collector</td>
<td><17,600</td>
</tr>
<tr>
<td>2-Lane Collector</td>
<td><6,400</td>
</tr>
</tbody>
</table>

Notes:
1. LOS F is characterized by ADT greater than the threshold listed under ‘LOS E’.
3. All volumes are approximate and assume ideal roadway characteristics. Actual threshold volumes for each Level of Service listed above may vary depending on a variety of factors including (but not limited to) roadway curvature and grade, intersection or interchange spacing, driveway spacing, percentage of trucks and other heavy vehicles, travel lane widths, signal timing characteristics, on-street parking, volume of cross traffic and pedestrians, etc.

5.1.1 Level of Service Policies

City of Stockton

The Envision Stockton 2040 General Plan contains the following Level of Service policy:

Action TR-4.1A

Strive for Level of Service (LOS) D or better for both daily roadway segment and peak hour intersection operations, except when doing so would conflict with other land use, environmental, or economic development priorities…

This policy also includes a list of locations where there are exceptions to the typical LOS threshold of LOS D:

Strive for different LOS standards along the following corridors due to physical constraints that limit the improvements that can be constructed:

- Hammer Lane, West Lane to Holman Road – LOS E

6. Operational (LOS) Analysis

6.1 Existing Conditions

The Existing conditions describe the existing transportation facilities serving the project site and establish the traffic conditions which currently exist for those facilities. Existing conditions is the analysis scenario in which

Include LOS intersections: 1) Telstar/Holman, 2) Auto Center Cir/Holman, 3) Hammer/Holman, 4) Simpson/Hammer.
current operations at study locations are analyzed and establishes the baseline traffic operations for the proposed project impact analysis.

6.1.1 Existing Roadway LOS

Existing weekday daily traffic volumes were derived for 2020 using straight line growth between volumes presented for years 2016 and 2040 in the *Envision Stockton 2040 General Plan Final Environmental Impact Report* (FEIR, 2018). Table 6.1 presents a summary of the LOS at each study location during the Existing (2020) conditions, with LOS also calculated for the 2016 volumes for comparison.

Table 6.1 Existing Conditions Roadway Operations

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2016 ADT</th>
<th>LOS</th>
<th>2020 ADT Estimate</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>8-Lane Arterial</td>
<td>E</td>
<td>38,240</td>
<td>B</td>
<td>38,851</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>8-Lane Arterial</td>
<td>D</td>
<td>36,690</td>
<td>A</td>
<td>37,277</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>16,570</td>
<td>A</td>
<td>16,836</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.1, all three study roadway locations operate at acceptable LOS under Existing (2020) conditions.

6.1.2 Existing Plus Project Roadway LOS

Existing Plus Project conditions refers to the analysis scenario in which projected trips generated by the proposed project are superimposed onto the existing “background” traffic volumes. Traffic impacts associated with the proposed development are investigated in comparison to the Existing Conditions.

Table 6.2 presents a summary of the LOS at each study location during the Existing Plus Project conditions.

Table 6.2 Existing Plus Project Conditions Roadway Operations

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2020 Plus Project ADT Estimate</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>8-Lane Arterial</td>
<td>E</td>
<td>39,401</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>8-Lane Arterial</td>
<td>D</td>
<td>37,847</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>18,256</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.2, all study roadway locations operate at acceptable LOS under Existing Plus Project conditions.

Add tables to show intersections LOS for all scenarios. Include appendix for Synchro calculations.
6.2 Cumulative Conditions

Cumulative conditions refer to the analysis scenario which reflects future conditions represented by local and regional growth in approximately 20 years.

In coordination with the City, the Cumulative conditions scenario is based on the proposed General Plan network, which includes the following roadway improvements:

- Hammer Lane reduced in travel width to 6 lanes
- Holman Road reduced in travel width to 4 lanes

6.2.1 Cumulative Roadway LOS

Table 6.3 presents a summary of the LOS at each study location during the Cumulative No Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2040 ADT General Plan</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>6-Lane Arterial</td>
<td>E</td>
<td>29,200</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>32,500</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>4-Lane Arterial</td>
<td>D</td>
<td>18,155</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.3, all study roadway locations operate at acceptable LOS under Cumulative No Project conditions.

6.2.2 Cumulative Plus Project Roadway LOS

Cumulative Plus Project conditions refer to the analysis scenario in which projected trips generated by the proposed project are superimposed on 2040 No Project traffic volumes and analyzed using the lane geometrics as listed under Cumulative No Project conditions. Table 6.4 presents a summary of the LOS at each study location during the Cumulative Plus Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2040 Plus Project ADT</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>6-Lane Arterial</td>
<td>E</td>
<td>29,220</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>32,525</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>4-Lane Arterial</td>
<td>D</td>
<td>18,155</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.4, all study roadway locations operate at acceptable LOS under Cumulative Plus Project conditions.
7. Conclusion

Based on the VMT analysis contained herein, the proposed Mobile Home Park at Auto Center Circle in Stockton is estimated to have a VMT per capita of 22.1, which is lower than the estimated Regional threshold of 25.5 VMT per capita. Additionally, the Project is an affordable housing project located in an infill location, and is also located within ½ mile of a stop along a high-quality transit corridor. The Project is presumed to cause a less than significant transportation impact.

Based on the operational analysis contained herein, the study locations are anticipated to maintain acceptable level of service with or without the addition of Project traffic under the following scenarios:

- **Existing conditions**
 - Hammer Lane – LOS A/B
 - Holman Road – LOS A

- **Existing Plus Project conditions**
 - Hammer Lane – A/B
 - Holman Road – LOS A

- **Cumulative No Project conditions**
 - Hammer Lane – C/B
 - Holman Road – LOS A

- **Cumulative Plus Project conditions**
 - Hammer Lane – C/B
 - Holman Road – LOS A
I started a blue beam session. It expire on 3/17/2021

Thanks,

Parviz Chitsazan
Senior Civil Engineer
City of Stockton
Public Works Department
22 E. Weber Ave, 3rd Floor
Stockton CA 95202
(209)-937-8243
Fax (209)-937-8277
parviz.chitsazan@stocktonca.gov

Checking in on this if you have comments.
Thanks

Please see attached...I already responded that one week is very optimistic.
Thanks

From: Tristan Osborn <Tristan.Osborn@stocktonca.gov>
Sent: Tuesday, February 16, 2021 8:25 AM
To: Even Marcelo <Even.Marcelo@stocktonca.gov>; Dodgie Vidad <Dodgie.Vidad@stocktonca.gov>
Please see attached traffic study. The consultant has requested a one-week turnaround, but please let me know if you need a couple extra days to review. Please send any comments/edits in whatever format is easiest for you. Thanks!

- Tristan

Tristan J. Osborn
SENIOR PLANNER, ADVANCED PLANNING
Direct: 209.937.8569
tristan.osborn@stocktonca.gov

For the City of Stockton Updates on COVID-19, please visit:
Twitter @stocktonUpdates
Facebook @CityofStockton
City Website http://www.stocktonca.gov

From: Matthew Maddox <mmaddox@rinconconsultants.com>
Sent: Thursday, February 11, 2021 9:56 AM
To: Tristan Osborn <Tristan.Osborn@stocktonca.gov>; Kari Zajac <kzajac@rinconconsultants.com>
Cc: Matt Diaz <Matt.Diaz@stocktonca.gov>; Michael McDowell <Michael.McDowell@stocktonca.gov>
Subject: RE: [EXT] Auto Center Drive - Traffic Study ETA

CAUTION: This email originated from outside the City of Stockton. Do not click any links or open attachments if this is unsolicited email.

Tristan,

Attached is the traffic memorandum GHD prepared. You can send to the engineering team to review when they are ready. If you or the engineering team has questions, let me know and I can share with GHD (Rosanna and Todd).

Also, attached is the HRA for Air Quality that we prepared. Let us know any questions/clarifications or if we can provide anything else.

Matt Maddox, AICP, Principal
Rincon Consultants, Inc.
Environmental Scientists | Planners | Engineers
916-706-1374 x250
916-204-9142 Mobile
rinconconsultants.com

From: Tristan Osborn <Tristan.Osborn@stocktonca.gov>
Sent: Thursday, February 11, 2021 9:38 AM
To: Matthew Maddox <mmaddox@rinconconsultants.com>; Kari Zajac <kzajac@rinconconsultants.com>
Cc: Matt Diaz <Matt.Diaz@stocktonca.gov>; Michael McDowell <Michael.McDowell@stocktonca.gov>
Subject: [EXT] Auto Center Drive - Traffic Study ETA
Matthew -

I hope all is well. I know we were hoping to have the traffic study this week; are we still on track for that? I want to give our engineering team a head's up on when they can expect the review period to start. Thanks!

- Tristan

For the City of Stockton Updates on COVID-19, please visit:
Twitter @stocktonUpdates
Facebook @CityofStockton
City Website http://www.stocktonca.gov
February 8, 2021

To: Rincon Consultants

Project: Stockton Auto Center Circle Mobile Home Project

From: Todd Tregenza, AICP
Rosanna Southern, EIT

Ref/Job No.: 11222590

CC: City of Stockton

File No.: 11222590-MEM001.DOCX

Subject: Traffic Impact Analysis and Supplemental Operational Analysis

1. Introduction

The City of Stockton has tasked GHD, Inc., sub-consultant to Rincon Consultants, with performing a vehicle miles traveled (VMT) impact analysis and operational analysis of the proposed Stockton Auto Center Circle Mobile Home Park development, hereafter referred to as the "Project", pursuant to SB 743 and local policy. Under SB 743, Level of Service (LOS) is no longer considered as the metric for environmental transportation impacts under the California Environmental Quality Act (CEQA), but rather VMT. This memorandum also includes traffic operational analysis results with LOS as the metric, consistent with City of Stockton Transportation Impact Analysis Guidelines (2003).

The proposed Project, which consists of 316 mobile home dwelling units, is in the northeastern portion of the City on a currently vacant property west of Holman Road at Auto Center Circle. Single-family homes abut the Project site to the south. The Stockton Auto Mall and related auto-oriented/commercial land uses are located to the north of the Project site. Automobile dealerships abut the Project’s eastern boundary and front Holman Road. This Project will require a General Plan amendment and proposes to change the Project site’s land use designation from Low Density Residential to Medium Density Residential. Figure 1.1 presents the study area map and project location.

This technical memorandum has been prepared to conduct the transportation impact analysis for the proposed project, document the technical data and methodologies utilized in the VMT and LOS analyses, and serve as a technical supplement to the environmental document. As part of this study, GHD has reviewed available guidance and documentation from the City of Stockton to identify any draft or advisory VMT baseline estimates and/or threshold recommendations. In coordination with City staff, and absent adopted or guiding threshold values, GHD has presumed a reduction of 15% below regional baseline as the VMT impact threshold consistent with the Governor’s Office of Planning and Research (OPR) Technical Advisory On Evaluating Transportation Impacts in CEQA (December 2018) and CEQA guidelines. Based on coordination with the City of Stockton, the San Joaquin Council of Governments Regional Travel Demand Model (SJC OG RTDM, 2019) was utilized to estimate baseline and project-level VMT per capita.
2. VMT Regulatory Framework & Methodology

SB 743 was signed into law in 2013, with the intent to better align California Environmental Quality Act (CEQA) practices with statewide sustainability goals related to efficient land use, greater multi-modal choices, and greenhouse gas reductions. The provisions of SB 743 became effective statewide on July 1, 2020. Under SB 743, automobile delay, traditionally measured as level of service (LOS), is no longer considered an environmental impact under CEQA. Instead, impacts are determined by changes to VMT.

VMT measures the number and length of vehicle trips made on a daily basis. VMT is a useful indicator of overall land use and transportation efficiency, where the most efficient system is one that minimizes VMT by encouraging shorter vehicle trip lengths, more walking and biking, or increased carpooling and transit. Measuring VMT requires estimating or measuring the full length of vehicle trips by purpose, such as commute trips or shopping trips that often cross between cities, counties, or states. For this reason, regional travel demand models, “big data,” and household travel surveys that are less limited by local agency boundaries are the preferred tools to estimate VMT under SB 743.

2.1 VMT Threshold

In December 2018, OPR released its Technical Advisory on Evaluating Transportation Impacts in CEQA (OPR’s Technical Advisory). OPR’s Technical Advisory identifies recommended VMT thresholds for different land use types, and screening criteria. Generally, OPR recommends a reduction of 15% or more in Baseline VMT per capita as the impact threshold for residential-based developments, as stated below. Residential development that would generate vehicle travel that is 15 or more percent below the existing residential VMT per capita, measured against the region or city, may indicate a less-than-significant transportation impact.

“Recommended threshold for residential projects: A proposed project exceeding a level of 15 percent below existing VMT per capita may indicate a significant transportation impact. Existing VMT per capita may be measured as regional VMT per capita or as city VMT per capita. Proposed development referencing a threshold based on city VMT per capita (rather than regional VMT per capita) should not cumulatively exceed the number of units specified in the Sustainable Communities Strategy (SCS) for that city, and should be consistent with the SCS.”

The City of Stockton 2018 Adopted General Plan makes reference to SB 743, and the need to measure the traffic impacts of future projects with VMT as a significance metric. However, the City has yet to establish VMT guidance and significance thresholds. The City is currently in the process of establishing VMT guidance and/or policies for implementing SB 743. In coordination with the City of Stockton, and in absence of adopted or guiding VMT threshold values for the City, the VMT analysis utilizes the recommended threshold of 15% below baseline (existing) regional VMT per capita for Project impact determination.

2.2 OPR Recommended Screening Thresholds

OPR’s Technical Advisory lists the following screening thresholds for land use projects. These types of development projects are presumed to have a less than significant impact on VMT and therefore, a less than significant adverse impact on transportation. OPR’s Technical Advisory suggests that lead agencies may screen out VMT impacts using project size, maps, transit availability, and provision of affordable housing.
• Projects that are consistent with the Sustainable Communities Strategy (SCS) or General Plan and generate or attract fewer than 110 daily trips (per CEQA).
• Map-based screening for residential and office projects located in low VMT areas, and incorporate similar features (density, mix of uses, transit accessibility).
• Certain projects within ½ mile of either an existing major transit stop\(^1\) or an existing stop along a high-quality transit corridor\(^2\) (CEQA Guidelines Section 15064.3, subdivision (b)(1)). However, this will not apply if information indicates that the project will still generate high levels of VMT.
• Affordable Housing Development in infill locations.
• Locally-serving retail projects, typically less than 50,000 square feet (does not apply to this Project).

The proposed Project is considered affordable housing, and it is in an infill location. OPR’s Technical Advisory has the following criteria for screening affordable housing:

Presumption of Less Than Significant Impact for Affordable Residential Development

“Adding affordable housing to infill locations generally improves jobs-housing match, in turn shortening commutes and reducing VMT. Further, “… low-wage workers in particular would be more likely to choose a residential location close to their workplace, if one is available.”\(^3\) In areas where existing jobs-housing match is closer to optimal, low income housing nevertheless generates less VMT than market-rate housing. Therefore, a project consisting of a high percentage of affordable housing may be a basis for the lead agency to find a less-than-significant impact on VMT. Evidence supports a presumption of less than significant impact for a 100 percent affordable residential development (or the residential component of a mixed-use development) in infill locations. Lead agencies may develop their own presumption of less than significant impact for residential projects (or residential portions of mixed-use projects) containing a particular amount of affordable housing, based on local circumstances and evidence. Furthermore, a project which includes any affordable residential units may factor the effect of the affordability on VMT into the assessment of VMT generated by those units.”

The proposed Project could be presumed to have a less than significant impact on VMT, under OPR’s Technical Advisory, due to it being 100 percent affordable housing in an infill location. However, the City has not identified these criteria based on local circumstances and evidence. Additionally, the Project is located within a ½ mile of an existing stop along a high-quality transit corridor. San Joaquin Regional Transit District maintains and operates fixed bus Route 43, which has a stop at Hammer Lane and Holman Road, and has 14-15 minute headways in both directions during peak commute hours. Therefore, this Project could be presumed to cause a less than significant transportation impact, under OPR’s Technical Advisory. However,

1 “major transit stop” - A major transit stop is a “site containing an existing rail, a ferry terminal served by bus or rail transit service, or intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during morning and evening peak hour commute”. OPR, 2018.
2 Pub. Resources Code, § 21155 (“For purposes of this section, a high-quality transit corridor means a corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.”).
for thoroughness, a VMT impact analysis has been performed to confirm if the project-specific or location-specific information would generate significant levels of VMT.

2.3 CEQA Baseline Considerations

Under CEQA, project impacts must be evaluated by comparing environmental conditions after project implementation to conditions at a point in time referred to as the baseline. The CEQA Guidelines Section 15125 provides the following guidance for establishing the baseline:

"An EIR must include a description of the physical environmental conditions in the vicinity of the project. This environmental setting will normally constitute the baseline physical conditions by which a lead agency determines whether an impact is significant. [...] The purpose of this requirement is to give the public and decision makers the most accurate and understandable picture practically possible of the project’s likely near-term and long-term impacts."

The CEQA Guidelines goes on to state that generally, the baseline is the environmental condition that exists at the time the notice of preparation is published or environmental analysis is commenced, from both a local and regional perspective. However, a lead agency may define the baseline by referencing historic conditions, as long as substantial evidence is provided that such a baseline is necessary to provide the most accurate picture practically possible of the project’s impacts given that existing conditions change or fluctuate over time.

The baseline provided in this memorandum is estimated for the region, from the most recently updated SJCOG Travel Demand Model.

2.4 VMT Methodology

2.4.1 City of Stockton Model

The City of Stockton General Plan Travel Demand Model (Stockton Model, 2017) is a trip-based model that utilizes the traditional four-step travel demand modelling method, a standard modelling process that uses land use inputs to determine trip generations and attractions, trip distribution, mode choice, and trip assignment. This model was considered for estimation of baseline VMT and project-level VMT estimates. However, the model boundary is limited by the City’s planning area (General Plan area) and does not account for the full length of trips with origins and destinations outside of the model boundary.

2.4.2 SJCOG Regional Travel Demand Model

The baseline provided in this memorandum is estimated from the most recently updated SJCOG Regional Travel Demand Model (SJCOG RTDM, VMIP-2, 2019), which has a base year of 2015 and a forecast year of 2045. The SJCOG RTDM utilizes the traditional four-step travel demand modelling method, and covers San Joaquin County, Merced County, and Stanislaus County. This tri-county model processes land use data to produce trips by different trip purposes and modes. It outputs VMT throughout the model boundary and represents interregional travel. The SJCOG Model base year 2015 was utilized to estimate regional baseline Residential VMT, including cities. To estimate trips associated with Residential VMT, all home-based
vehicular trips were selected for a trip-based evaluation of VMT. The model’s socioeconomic inputs were utilized to estimate regional population and calculate VMT per capita.

County External Trips

The SJCOG model inputs and trip purposes for evaluation of VMT is limited to the boundary of the model area. To estimate baseline VMT, the total trip lengths of trips with origins or destinations outside of the model boundary must be accounted for. Each of the model’s external gateways has an assigned link distance, and accurately represents the average distance travelled for trips beyond the model boundary, based on local and interregional commute patterns and census data. By accounting for the assigned link distances, the baseline VMT calculation includes the full trip lengths of internal-external and external-internal trips.

Project-Level VMT

Project-level VMT was estimated using the SJCOG model, based on the average length of residential-based trips from the traffic analysis zone (TAZ) containing the Project site. Then the trip generation, calculated in this memorandum, was multiplied by this average trip length to determine the total Project VMT. The total VMT was divided by the estimated Project population to arrive at the VMT per capita.

3. **Project Description**

The Project proposes to develop a mobile home park at an approximately 18.52-acre site, consisting of three vacant parcels located at the western terminus of Auto Center Circle (private street), and 316 dwelling units per the Site Plan. Figure 3.1 presents the project Site Plan.

3.1 **Project Site Access**

The proposed site will provide one main access point via Auto Center Circle, through a gated access at the eastern border of the Project site, and a secondary access further east than the gated access. Several driveways within the Project site along Auto Center Circle will provide access to parking areas interior to the development. The Site Plan also shows on-street parking along Auto Center Circle.
GENERAL NOTE:
PROPOSED USE MOBILE HOME PARK

LEGEND:

WB-40 FIRE TRUCK TURN RADIUS
1" OPEN AIR HALLWAY EMERGENCY VEHICLES AND PEDESTRIAN ACCESS
3" PEDESTRIAN WALKWAY
10X10' STORAGE UNIT
CONNECTION POINT TO PRIVATE UTILITY
HOME SITE
PARKING STALLS 10' X 20'
PROPERTY LINE
CURB AND GUTTER

2871 AUTO CENTER CIR.
PARCEL ID 128-030-01
PHASE 1

2810 AUTO CENTER CIR.
PARCEL ID 128-030-03
CONCEPTUAL PHASE 3

6411 HOLMAN RD
PARCEL ID 128-030-00
AUTO CENTER CIR.
PARCEL ID 128-030-02

2733 AUTO CENTER CIR.
PARCEL ID 128-030-04
CONCEPTUAL PHASE 2

6215 HOLMAN RD
PARCEL ID 128-030-05

Phase 1, 51 lots
Phase 2, 95 lots
Phase 3, 170 lots

FIGURE 3.1
PROJECT SITE PLAN

DEVELOPER
BAY AREA HOME OPTIONS, INC.
SHAWN BOWLES
1730 NINTH STREET
BERKELEY, CA 94710
OFFICE (510) 724-9249

City of Stockton
Stockton Auto Center Circle Mobile Home Project
Project Site Plan

Project No. 11222590
Report No. MEM001
Date JAN 2021
3.2 Trip Generation

Project trip generation has been estimated for the total number of dwelling units, 316 per the Site Plan. The daily and peak hour trip generation estimations were achieved by utilizing the Institute of Transportation Engineers (ITE) publication *Trip Generation Manual (10th Ed.)*. Trip rates for the 316 dwelling units used the Land Use Code 240 for Mobile Home Park. In addition to the proposed Project, an estimation of trips generated for the current General Plan land use and zoning designation has been included for comparison. The current General Plan land use and zoning designation for the project site is Low Density Residential, which has a maximum density of 8.7 dwelling units per acre per the City’s Municipal Code. Based on the site size of 18.52 acres, an estimated 161 single-family dwelling units would be allowed within the Low Density Residential designation.

Table 3.1 presents the Project trip generation, the trip generation under General Plan land use and zoning, and the difference between the two. As shown, the Project trip generation is 1,580 daily trips, 82 trips in the AM peak hour, and 145 trips in the PM peak hour. The Project is estimated to generate approximately 60 additional daily trips compared to the General Plan land use.

Table 3.1 Project Trip Generation

<table>
<thead>
<tr>
<th>Land Use Category (ITE Code)</th>
<th>Unit¹</th>
<th>Daily Trip Rate/Unit²</th>
<th>AM Peak Hour Trip Rate/Unit</th>
<th>PM Peak Hour Trip Rate/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>In %</td>
<td>Out %</td>
</tr>
<tr>
<td>Single-Family Detached Housing (210)</td>
<td>DU</td>
<td>9.44</td>
<td>0.74</td>
<td>25%</td>
</tr>
<tr>
<td>Mobile Home Park (240)</td>
<td>DU</td>
<td>5.00</td>
<td>0.26</td>
<td>31%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Quantity (Units)</th>
<th>Daily Trips</th>
<th>AM Peak Hour Trips</th>
<th>PM Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>General Plan Land Use (Low Density Residential)</td>
<td>161</td>
<td>1,520</td>
<td>119</td>
<td>30</td>
</tr>
<tr>
<td>Mobile Home Park</td>
<td>316</td>
<td>1,580</td>
<td>82</td>
<td>25</td>
</tr>
</tbody>
</table>

Comparison Between Land Uses

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Quantity (Units)</th>
<th>Daily Trips</th>
<th>AM Peak Hour Trips</th>
<th>PM Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>60</td>
<td>-37</td>
<td>-5</td>
</tr>
</tbody>
</table>

Notes:
1. 1 ksf = 1,000 square feet DU = dwelling unit
2. Trip rates based on ITE Trip Generation Manual 10th edition average rates

3.3 Trip Distribution & Assignment

The trip distribution and assignment described below are used only for the operational (LOS) analysis. Existing average daily traffic (ADT) volumes presented in the General Plan EIR were used to estimate the portion of trips travelling in each direction to and from the Project site and along the study roadway segments. Figure 3.2 presents the trip distribution for the Project-generated trips.
To calculate trip assignment, the trip distribution was applied to the estimated Project trip generation to determine the Project trips that travel in each direction. Table 3.2 presents the project-generated trips assigned to the adjacent roadways, for both Existing and Cumulative scenarios.

Table 3.2 Project Trip Assignment

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Location</th>
<th>% Distribution</th>
<th>Existing</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holman Road</td>
<td>south of Auto Center Circle*</td>
<td>10%</td>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>Holman Road</td>
<td>north of Auto Center Circle</td>
<td>90%</td>
<td>1,420</td>
<td>55</td>
</tr>
<tr>
<td>Hammer Lane</td>
<td>west of Holman Road</td>
<td>35%</td>
<td>550</td>
<td>20</td>
</tr>
<tr>
<td>Hammer Lane</td>
<td>east of Holman Road</td>
<td>36%</td>
<td>570</td>
<td>25</td>
</tr>
<tr>
<td>Holman Road</td>
<td>north of Hammer Lane*</td>
<td>19%</td>
<td>300</td>
<td>10</td>
</tr>
</tbody>
</table>

*Not a study segment, but shown for reference of distributed trips.

These Project trips were superimposed onto the Existing conditions (2020) traffic volumes to derive the Existing Plus Project traffic volumes. The General Plan’s Cumulative (2040) scenario already assumes the Project site would be used for Low Density Residential dwelling units, so to calculate the Cumulative Plus Project traffic volumes on the adjacent roadway segments, the volumes generated by the previously-assumed General Plan land use had to be subtracted from the Cumulative No Project conditions ADT prior to superimposing the added Project trips. The Project trip values for Cumulative conditions shown in Table 3.2 represent the net change in roadway volume that result from this calculation.

4. VMT Analysis

This section presents the various findings of the VMT analyses conducted, based on the methodologies previously described, to evaluate and estimate baseline VMT.

4.1 Baseline VMT

Regional Baseline VMT, population, and VMT per capita information from the SJCOG model is provided in Table 4.1.

Table 4.1 SJCOG Model Baseline VMT Metrics

<table>
<thead>
<tr>
<th>SJCOG Model (Regional)</th>
<th>Total VMT</th>
<th>Population</th>
<th>VMT per Capita</th>
<th>15% Below Baseline Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,784,680</td>
<td>627,371</td>
<td>29.9</td>
<td>25.5</td>
<td></td>
</tr>
</tbody>
</table>

Based on the Regional model, the Baseline VMT per capita is 29.9 (including Cities), and the 15% below regional baseline threshold for determining Project impact significance is 25.5 VMT per capita.

4.2 Project VMT

Project total VMT is determined by multiplying the Project’s trip generation by the average trip length of the model TAZ where the Project is located. The Project population was estimated based on the General Plan rate for average persons per household in the City of Stockton (3.23 persons per household). The total VMT divided by the estimated Project population yields the Project’s estimated VMT per capita, which is
compared to the regional threshold to determine impact significance. Table 4.2 presents the Project’s VMT evaluation and estimated VMT per capita compared to the regional threshold.

Table 4.2 Project-Level VMT

<table>
<thead>
<tr>
<th>Project Trips</th>
<th>Average Trip Length (mi)</th>
<th>Project Total VMT</th>
<th>Population</th>
<th>Project VMT per Capita</th>
<th>SJCOG Model Regional Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,580</td>
<td>14.3</td>
<td>22,594</td>
<td>1,021</td>
<td>22.1</td>
<td>25.5</td>
</tr>
</tbody>
</table>

As shown, the Project VMT per capita of 22.1 is lower than the estimated Regional threshold, and is presumed to cause a less than significant transportation impact.

5. **LOS Analysis Parameters & Methodologies**

5.1 **Level of Service (LOS) Methodologies**

Traffic operations were quantified through the determination of “Level of Service" (LOS). Level of Service is a qualitative measure of traffic operating conditions, whereby a letter grade "A" through "F" is assigned to an intersection, or roadway segment, representing progressively worsening traffic conditions. LOS "A" represents free-flow operating conditions and LOS "F" represents over-capacity conditions. Levels of Service was calculated for all study locations using the methods documented in the Transportation Research Board Publication *Highway Capacity Manual, Sixth Edition, A Guide for Multimodal Mobility Analysis, 2016* (HCM 6).

Table 5.1, presents the LOS traffic volume thresholds in terms of bi-directional average daily traffic (ADT). These thresholds are found in the *Envision Stockton 2040 General Plan Update and Utility Master Plan Supplements Final EIR and Mitigation Monitoring and Reporting Program*.
Table 5.1 Level of Service (LOS) Criteria for Roadways

<table>
<thead>
<tr>
<th>Facility Class & Lanes</th>
<th>Two-way Average Daily Traffic (ADT) Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS A</td>
</tr>
<tr>
<td>6-Lane Freeway</td>
<td><41,400</td>
</tr>
<tr>
<td>4-Lane Freeway</td>
<td><27,600</td>
</tr>
<tr>
<td>8-Lane Arterial</td>
<td><38,100</td>
</tr>
<tr>
<td>6-Lane Arterial</td>
<td><28,800</td>
</tr>
<tr>
<td>4-Lane Arterial</td>
<td><18,600</td>
</tr>
<tr>
<td>2-Lane Arterial</td>
<td><8,400</td>
</tr>
<tr>
<td>4-Lane Collector</td>
<td><17,600</td>
</tr>
<tr>
<td>2-Lane Collector</td>
<td><6,400</td>
</tr>
</tbody>
</table>

Notes:
1. LOS F is characterized by ADT greater than the threshold listed under ‘LOS E’.
3. All volumes are approximate and assume ideal roadway characteristics. Actual threshold volumes for each Level of Service listed above may vary depending on a variety of factors including (but not limited to) roadway curvature and grade, intersection or interchange spacing, driveway spacing, percentage of trucks and other heavy vehicles, travel lane widths, signal timing characteristics, on-street parking, volume of cross traffic and pedestrians, etc.

5.1.1 Level of Service Policies

City of Stockton

The Envision Stockton 2040 General Plan contains the following Level of Service policy:

Action TR-4.1A

Strive for Level of Service (LOS) D or better for both daily roadway segment and peak hour intersection operations, except when doing so would conflict with other land use, environmental, or economic development priorities…

This policy also includes a list of locations where there are exceptions to the typical LOS threshold of LOS D:

Strive for different LOS standards along the following corridors due to physical constraints that limit the improvements that can be constructed:

- Hammer Lane, West Lane to Holman Road – LOS E

6. Operational (LOS) Analysis

6.1 Existing Conditions

The Existing conditions describe the existing transportation facilities serving the project site and establish the traffic conditions which currently exist for those facilities. Existing conditions is the analysis scenario in which
current operations at study locations are analyzed and establishes the baseline traffic operations for the proposed project impact analysis.

6.1.1 Existing Roadway LOS

Existing weekday daily traffic volumes were derived for 2020 using straight line growth between volumes presented for years 2016 and 2040 in the *Envision Stockton 2040 General Plan Final Environmental Impact Report* (FEIR, 2018). Table 6.1 presents a summary of the LOS at each study location during the Existing (2020) conditions, with LOS also calculated for the 2016 volumes for comparison.

Table 6.1 Existing Conditions Roadway Operations

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2016 ADT</th>
<th>LOS</th>
<th>2020 ADT Estimate</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>8-Lane Arterial</td>
<td>E</td>
<td>38,240</td>
<td>B</td>
<td>38,851</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>8-Lane Arterial</td>
<td>D</td>
<td>36,690</td>
<td>A</td>
<td>37,277</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>16,570</td>
<td>A</td>
<td>16,836</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.1, all three study roadway locations operate at acceptable LOS under Existing (2020) conditions.

6.1.2 Existing Plus Project Roadway LOS

Existing Plus Project conditions refers to the analysis scenario in which projected trips generated by the proposed project are superimposed onto the existing “background” traffic volumes. Traffic impacts associated with the proposed development are investigated in comparison to the Existing Conditions.

Table 6.2 presents a summary of the LOS at each study location during the Existing Plus Project conditions.

Table 6.2 Existing Plus Project Conditions Roadway Operations

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2020 Plus Project ADT Estimate</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>8-Lane Arterial</td>
<td>E</td>
<td>39,401</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>8-Lane Arterial</td>
<td>D</td>
<td>37,847</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>18,256</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.2, all study roadway locations operate at acceptable LOS under Existing Plus Project conditions.
6.2 Cumulative Conditions

Cumulative conditions refer to the analysis scenario which reflects future conditions represented by local and regional growth in approximately 20 years.

In coordination with the City, the Cumulative conditions scenario is based on the proposed General Plan network, which includes the following roadway improvements:
- Hammer Lane reduced in travel width to 6 lanes
- Holman Road reduced in travel width to 4 lanes

6.2.1 Cumulative Roadway LOS

Table 6.3 presents a summary of the LOS at each study location during the Cumulative No Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2040 ADT General Plan</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>6-Lane Arterial</td>
<td>E</td>
<td>29,200</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>32,500</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>4-Lane Arterial</td>
<td>D</td>
<td>18,100</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.3, all study roadway locations operate at acceptable LOS under Cumulative No Project conditions.

6.2.2 Cumulative Plus Project Roadway LOS

Cumulative Plus Project conditions refers to the analysis scenario in which projected trips generated by the proposed project are superimposed on 2040 No Project traffic volumes and analyzed using the lane geometrics as listed under Cumulative No Project conditions. Table 6.4 presents a summary of the LOS at each study location during the Cumulative Plus Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2040 Plus Project ADT</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>6-Lane Arterial</td>
<td>E</td>
<td>29,220</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>32,525</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>4-Lane Arterial</td>
<td>D</td>
<td>18,155</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.4, all study roadway locations operate at acceptable LOS under Cumulative Plus Project conditions.
7. Conclusion

Based on the VMT analysis contained herein, the proposed Mobile Home Park at Auto Center Circle in Stockton is estimated to have a VMT per capita of 22.1, which is lower than the estimated Regional threshold of 25.5 VMT per capita. Additionally, the Project is an affordable housing project located in an infill location, and is also located within ½ mile of a stop along a high-quality transit corridor. The Project is presumed to cause a less than significant transportation impact.

Based on the operational analysis contained herein, the study locations are anticipated to maintain acceptable level of service with or without the addition of Project traffic under the following scenarios:

- **Existing conditions**
 - Hammer Lane – LOS A/B
 - Holman Road – LOS A

- **Existing Plus Project conditions**
 - Hammer Lane – A/B
 - Holman Road – LOS A

- **Cumulative No Project conditions**
 - Hammer Lane – C/B
 - Holman Road – LOS A

- **Cumulative Plus Project conditions**
 - Hammer Lane – C/B
 - Holman Road – LOS A
February 11, 2021
Project No. 20-10384

City of Stockton
Planning & Engineering Division
345 North El Dorado Street
Stockton, California 95902
Contact: Matt Diaz, Advanced Planning Manager

Subject: Toxic Air Contaminant Analysis Memorandum for the Auto Center Drive Mobile Home Project

Dear Mr. Diaz:

Rincon has prepared this Toxic Air Contaminant (TAC) Analysis Memorandum for the Auto Center Mobile Home Project (project). This memorandum qualitatively analyses operational health risk impacts from existing TACs upon the project.

Project Description

The approximately 18.5-acre project site is located on Auto Center Circle west of Holman Road, in the northeastern portion of Stockton. The site address is 2733, 2811, 2868, 2871, and 2810 Auto Center Circle, in the City of Stockton, California. The project site is currently vacant.

The project would construct a mobile home park, consisting of 316 units on the project site and 373 surface parking spaces. The project requires an Administrative Use Permit (AUP) per Stockton Municipal Code (SMC) Section 16.20.020, Allowable land uses and permit requirements, and a General Plan Amendment to change the project site’s land use designation from Low Density Residential to Medium Density Residential. SMC Section 16.80.210 includes a requirement for mobile home parks to obtain an AUP and provides standards specific to the use. The site would be gated along Auto Center Circle near the proposed site office.

Background

Air Quality

The project area is located in the San Joaquin Valley Air Basin (SJVAB), which occupies the southern half of the Central Valley and comprises eight counties: San Joaquin, Stanislaus, Fresno, Merced, Madera, Kings, Tulare, and portions of Kern County. The SJVAB is approximately 250 miles long and 35 miles in width (on average) and is bordered by the Coast Range Mountains on the west, the Sierra Nevada mountains on the east, and the Tehachapi Mountains to the south. On the valley floor, the SJVAB is
open only to the north, which heavily influences prevailing winds.\(^1\) The San Joaquin Valley Air Pollution Control District (SJVAPCD) is the designated air quality control agency for the SJVAB.

Toxic Air Contaminants

A TAC is an air pollutant that may cause or contribute to an increase in mortality or serious illness or which may pose a present or potential hazard to human health. TACs may result in long-term health effects such as cancer, birth defects, neurological damage, asthma, genetic damage, or short-term acute effects such as eye watering, respiratory irritation, runny nose, throat pain, and headaches. TACs are considered either carcinogenic or non-carcinogenic based on the nature of the health effects associated with exposure. For carcinogenic TACs, potential health impacts are evaluated in terms of overall relative risk expressed as excess cancer cases per one million exposed individuals. Non-carcinogenic TACs differ in that there is generally assumed to be a safe level of exposure below which no negative health impact is believed to occur. These levels are determined on a pollutant-by-pollutant basis.

TACs include both organic and inorganic chemical substances. One of the main sources of TACs in California is diesel engines that emit exhaust containing solid material known as diesel particulate matter (DPM); however, TACs may be emitted from a variety of common sources, including gasoline stations, motor vehicles, dry cleaners, industrial operations, painting operations, and research and teaching facilities.

In 1983, the California Legislature enacted a program to identify the health effects of TACs and to reduce exposure to these contaminants to protect the public health (Assembly Bill [AB] 1807: Health and Safety Code Sections 39650–39674). The Legislature established a two-step process to address the potential health effects from TACs. The first step is the risk assessment (or identification) phase. The second step is the risk management (or control) phase of the process.

The California Air Toxics Program establishes the process for the identification and control of TACs and includes provisions to make the public aware of significant toxic exposures and for reducing risk. Additionally, the Air Toxics "Hot Spots" Information and Assessment Act (AB 2588, 1987, Connelly Bill) was enacted in 1987 and requires stationary sources to report the types and quantities of certain substances routinely released into the air. The goals of the Air Toxics "Hot Spots" Act are to collect emission data, identify facilities having localized impacts, ascertain health risks, notify nearby residents of significant risks, and reduce those significant risks to acceptable levels. The Children's Environmental Health Protection Act, California Senate Bill 25 (Chapter 731, Escutia, Statutes of 1999), focuses on children's exposure to air pollutants. The act requires the California Air Resources Board (CARB) to review its air quality standards from a children's health perspective, evaluate the statewide air quality monitoring network, and develop any additional air toxic control measures needed to protect children's health.

Sensitive Receptors

Some receptors are considered more sensitive than others to air pollutants. The reasons for greater than average sensitivity include pre-existing health problems, proximity to emissions sources, or duration of exposure to air pollutants. Schools, hospitals, and convalescent homes are considered to be relatively sensitive to poor air quality because children, elderly people, and the infirmed are more

susceptible to respiratory distress and other air quality-related health problems than the general public. Residential areas are also considered sensitive to poor air quality because people usually stay home for extended periods of time, with greater associated exposure to ambient air quality. Recreational uses are considered sensitive receptors due to the greater exposure to ambient air quality conditions because vigorous exercise associated with recreation places a high demand on the human respiratory system. The SJVAPCD considers hospitals, schools, parks, playgrounds, daycare centers, nursing homes, convalescent facilities, and residential areas as sensitive receptors. The project would introduce new sensitive receptors to the project site as residents.

Thresholds

The SJVAPCD has specified thresholds from health risk impacts from permitted and non-permitted TAC sources. For carcinogenic (cancer) risk, the threshold is greater than 20 per million. For non-carcinogenic risk (acute and chronic), the threshold is greater than 1. The non-carcinogenic risk threshold is a unitless value. Both thresholds are used for the determination of impacts in this analysis.

Methodology

In the SJVAPCD Guide for Assessing and Mitigating Air Quality Impacts, SJVAPCD has identified two categories for land use projects that have the potential to cause long-term public health risk impacts: Type A and Type B projects. Type A projects are land use projects that place new sources of air toxics within the vicinity of existing receptors. Type B projects are land use projects that place new receptors in the vicinity of existing new sources. For Type A projects, the SJVAPCD has screening tools and modeling guidance to evaluate new sources of TACs. For Type B projects, SJVAPCD recommends using guidance from CARB’s Air Quality and Land Use Handbook: A Community Health Perspective for siting new sensitive receptors within proximity to TAC sources. Advisory recommendations for common sources of TACs are listed in Table 1-1 of the handbook. CARB recommends specific distance between sources to minimize the health risks from TAC sources upon sensitive receptors. The proposed project is a Type B project because it would site new sensitive receptors (i.e. residents) near existing sources. Residential developments are not considered a source of TACs and the project is not categorized as Type A.

To screen out sources of TACs, all potential TAC sources within 1,000 feet of the project boundaries were identified. An influence area of 1,000 feet was used based on the key health findings from the CARB land use handbook, which suggests that adverse health risks are more likely when a receptor is within 1,000 feet of a TAC source. Furthermore, CARB recommends a buffer distance of 1,000 feet for several sources, including distribution centers, rail yards, and chrome palters. A public records request was also submitted to the SJVAPCD to identify and obtain information on permitted stationary sources within 1,000 feet of the project site. The distance between the TAC sources and the project site were then estimated and compared to the applicable CARB distance advisory recommendations.

3 Note that SJVAPCD updated their carcinogenic threshold from 10 in one million to 20 in one million in May 2015. See https://www.valleyair.org/busind/pto/staff-report-5-28-15.pdf

The relevant CARB distance advisory recommendations are listed below:

- **Freeways and High-Traffic Roads**: Avoid siting new sensitive within 500 feet of a freeway, urban roads with 100,000 vehicles per day, or rural roads with 50,000 vehicles per day.

- **Distribution Centers**: Avoid siting new sensitive land uses within 1,000 feet of a distribution center (that accommodates more than 100 trucks per day, more than 40 trucks with operating transport refrigeration units (TRUs) per day, or where TRU unit operations exceed 300 hours per week
 - Take into account the configuration of existing distribution centers and void locating residences and other sensitive land uses near entry and exit points.

- **Rail Yards**: Avoid siting new sensitive land uses within 1,000 feet of a major service and maintenance rail yard.
 - Within one mile of a rail yard, consider possible siting limitations and mitigation approaches.

- **Gasoline Dispensing Facilities**: Avoid siting new sensitive land uses with 300 feet of a large gas station (defined as facility with a throughput of 3.6 million gallons per year or greater). A 50-foot separation is recommended for typical gas dispensing facilities.

Impact Analysis

An initial review of the project area determined that there are no commercial gasoline dispensing facilities, warehouse/distribution centers, nor railyards within 1,000 feet of the project site. In addition, no sources of TACs were identified in the surrounding residential neighborhoods. However, four potential TAC sources were identified. One roadway (Holman Road) and the three SJVAPCD permitted facilities located within the auto dealerships developments are within 1,000 feet of the project site. See Attachment 1 for the Health Risk Assessment screening information.

Mobile Sources

Mobile sources refer to emissions from motor vehicles, including tailpipe and evaporative emissions, and are classified as either on-road or off-road. On-road sources may be legally operated on roadways and highways. Off-road sources include aircraft, ships, trains, and self-propelled construction equipment. The natural environment can also generate air pollutants, such as when high winds suspend fine dust particles. Pollutants emitted by vehicle exhaust are a public health concern. The U.S. EPA has identified six pollutants of highest priority: DPM, acrolein, acetaldehyde, formaldehyde, benzene, and 1,3-butadiene. CARB has identified DPM as the primary airborne carcinogen in the state. A primary source of DPM is exhaust from diesel vehicle traffic on roadways. Exposure to these pollutants from mobile sources can increase the chances of adverse cancer and non-cancer health effects. Therefore, siting new sensitive receptors at further distances from roadways is recommend to reduce exposure from traffic-related emissions.
Holman Road is approximately 200 feet east of the closest project boundary and has average daily traffic of approximately 16,570 vehicles per day. The existing traffic volume is well below the threshold of 100,000 vehicles per day for urban roads. Therefore, the project would comply with CARB’s siting recommendation for freeways and high-traffic roads. Note that roadways, such as Hammer Lane and State Route 99, are not included in this analysis since both roadways are over 1,000 feet from the project site. Hammer Lane is approximately 1,250 feet north and State Route 99 is approximately 0.75 miles east of the project site.

SJVAPCD Permitted Facilities

A public records request was submitted to SJVAPCD to identify permitted stationary sources within 1,000 feet of the project site. SJVAPCD conducted a site review for air toxics within a quarter of a mile of the project site and identified three permitted facilities. SJVAPCD also provided health risk results and gasoline annual throughput rates (i.e. the amount of gasoline dispensed per year). The three permitted facilities within 1,000 feet of the project site include:

1. Big Valley Ford (3282 Auto Center Drive) is an auto center dealership that operates two paint spray booth coating operations and a gasoline dispensing facility, not for commercial use. The facility is approximately 120 feet north of the project boundary. The facility has an annual throughput rate of approximately 68,481 gallons per year. From the coating operations, the total approximate cancer risk is from the coating operations is 0.25 per million, the total approximate acute hazard index is 0.05, and the total approximate chronic hazard index is 0.02.

2. Chase Chevrolet (6441 Holman Road) is an auto center dealership that operates a gasoline dispensing facility, not for commercial use. The facility is approximately 230 feet northeast of the project boundary. The annual throughput rate is approximately 4,505 gallons per year.

3. California Car Wash (3434 East Hammer Lane) is a car washing facility that operates a gasoline dispensing facility. The facility is approximately 970 feet north of the closest project boundary. The annual throughput rate calculated is approximately 3,942,000 gallons per year.

The gasoline dispensing facilities were compared to CARB’s advisory recommendations, while the health risks from paint spray booth coating operations from the Big Valley Ford were compared to the SJVAPCD TAC thresholds. CARB does not have distance recommendations for paint spray booth coating operations. The California Car Wash would be considered a large gas station since its annual throughput of gasoline is greater than 3.6 million gallons per year. However, the California Car Wash is located approximately 970 feet north of the closest project boundary. There is adequate distance between the facility and the proposed project since CARB recommends a 300 feet distance between a sensitive land use and a large gas station. The gas dispensing sources from the Big Valley Ford and the Chase Chevrolet facilities also comply with CARB’s recommendation for typical gas stations since they are over 50 feet from the project site. In addition, the health risks associated with the two paint spray booth operation at the Big Valley Ford facility are 0.25 per million, 0.05 for acute hazard index, and 0.02 for chronic hazard index. These carcinogenic and non-carcinogenic risk and hazard values are below the SJVAPCD thresholds of 20 per million for carcinogenic risks and 1 for non-carcinogenic hazards. Therefore, the

6 Correspondence with Theresa Haywood, Senior Office Assistant San Joaquin Valley Air Pollution Control District. 26 January 2021.

7 Note that this facility is currently named “Zoom Car Wash” but SJVAPCD confirmed that there has been no transfer of ownership for this facility and that this is only a name change.
project would be sited at an appropriate distance from existing permitted facilities and health risks from the Big Valley Ford would be below the SJVAPCD thresholds.

Conclusion

The project proposes the construction of mobile home residences, which would introduce new sensitive receptors to the project site. A screening analysis was completed to identify all potential TAC sources within 1,000 feet of the project boundaries. CARB’s siting distance recommendations from their land use handbook and the SJVAPCD TAC thresholds were used in this analysis to make impact determinations.

Four potential TAC sources were identified, one mobile source (Holman Road) and three permitted stationary sources. Due to the low traffic volume on Holman Road, the roadway would not be considered a high-traffic roadway and mobile sources were screened out. SJVAPCD provided facility-specific site information that showed that the sources at the three permitted stationary sources are located beyond CARB’s recommended siting distance for gasoline dispensing facilities. Furthermore, both the paint spray booth coating operations at the Big Valley Ford facility have health risks that are below the SJVAPCD thresholds. Therefore, the future residential sensitive receptors would be sited at an appropriate distance from potential TAC sources and risks from potential exposure to air toxics would be negligible.

Sincerely,

Rincon Consultants, Inc.

Kari Zajac, MESM
Project Manager

Matt Maddox, AICP
Principal
Attachment 1

Health Risk Assessment Screening Information
I. Proposal

California Car Wash is requesting an Authority to Construct (ATC) permit to upgrade the existing Phase II Vapor Recovery System from Balance (G-70-52-AM) to VST EVR with Veeder-Root Vapor Filter not including ISD (VR-203) in this retail facility.

II. Applicable Rules

- **District Rule 1081**: Source Sampling (12/16/93)
- **District Rule 2201**: New and Modified Stationary Source Review Rule (09/21/06)
- **District Rule 2520**: Federally Mandated Operating Permits (06/21/01)
- **District Rule 4102**: Nuisance (12/17/92)
- **District Rule 4621**: Gasoline Transfer into Stationary Storage Containers, Delivery Vessels and Bulk Plants (12/20/07)
- **District Rule 4622**: Transfer of Gasoline into Vehicle Tanks (12/20/07)
- **CH&SC 42301.6**: School Notice
- **Public Resources Code 21000-21177**: California Environmental Quality Act (CEQA)
- **California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387**: CEQA Guidelines

III. Project Location

The facility is located at 3434 East Hammer Lane, Stockton in CA. There will not be an increase of emissions as a result of this project. Pursuant to California Health and Safety Code 42301.6, a school notification is not required.
IV. Process Description

Gasoline is delivered to the storage tanks via a delivery vessel. Gasoline is then dispensed from the tanks into motor vehicle tanks during vehicle refueling.

V. Equipment Listing

Pre-Project Equipment Description:

GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY BALANCE PHASE II VAPOR RECOVERY SYSTEM (G-70-52-AM)

Proposed Modification:

MODIFICATION OF GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY BALANCE PHASE II VAPOR RECOVERY SYSTEM (G-70-52-AM): UPGRADE THE EXISTING PHASE II VAPOR RECOVERY SYSTEM FROM BALANCE (G-70-52-AM) TO VST EVR WITH VEEDEER-ROOT VAPOR FILTER NOT INCLUDING ISD (VR-203). THE POST PROJECT EQUIPMENT DESCRIPTION WILL BECOME: GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY A PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY A VST EVR PHASE II VAPOR RECOVERY SYSTEM WITH VEEDEER-ROOT VAPOR FILTER NOT INCLUDING ISD (VR-203)

Post Project Equipment Description:

GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY A PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY A VST EVR PHASE II VAPOR RECOVERY SYSTEM WITH VEEDEER-ROOT VAPOR FILTER NOT INCLUDING ISD (VR-203)
VI. Emission Control Technology Evaluation

A. Control Technique

The motor vehicle refueling operation will use California Air Resources Board (CARB) certified Phase I and Phase II vapor recovery systems designed to reduce VOC emission by at least 98% during storage tank filling & 95% during motor vehicle refueling.

B. BACT

The use of CARB certified Phase I & II vapor recovery systems satisfies SJVUAPCD BACT requirements for motor vehicle refueling facilities.

VII. Calculations

<table>
<thead>
<tr>
<th>Annual Throughput Comparison Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Post Project Fueling Points</td>
</tr>
<tr>
<td>Annual Throughput Proposed by Applicant</td>
</tr>
<tr>
<td>Annual Throughput Calculated by District¹</td>
</tr>
<tr>
<td>Use the Following Post Project Annual Throughput</td>
</tr>
</tbody>
</table>

A. Assumptions

- VOC is the only pollutant emitted from this operation.
- This facility may operate 24 hours per day, 365 days per year.
- Nozzles pump at 10 gal/min. (from ARB Executive Orders).
- Stations are designated to handle peak gasoline dispensing periods, so an estimated use factor of 50% is considered conservative.
- If the time that a vehicle spends at a fueling station is 8 minutes, only about 2 minutes of that time is actually spent dispensing fuel (20 gallons @ 10 gal/min). Therefore, a utilization factor of 0.25 will be used for calculations.
- Since the facility is not required to install ISD until September 1, 2009, no annual throughput limit is necessary at this time before the due date. However, in order to avoid triggering the ISD requirements for Phase II EVR, the facility will be required to accept an annual throughput limit of 1.8 million gallons/year until September 1, 2010, after which the annual throughput limit will be 600,000 gallons/year or less.
- As a conservative estimate, the post-project annual VOC emissions are calculated based on the District-calculated annual throughput of 3,942,000 gallons per year (per District assumption).

B. Emission Factors

Pursuant to California Air Resource Board, OPW Phase I Vapor Recovery System and VST Phase II Vapor Recovery System are certified Phase I & II Vapor Recovery System under Executive Orders (EO) VR-102 and VR-203 respectively. The emission factor were obtain from Appendix A - Emission Factors For Gasoline

¹ This value is calculated using the standard District assumptions listed in this section.
Enclosed are questionnaire forms asking for annual process data for your equipment that have a Permit to Operate (PTO) from the District. The purpose of requesting this information is to update your facility records with the District, help expedite the renewal of your company's permit(s), and to collect data for the District's and State's emission inventories.

The information you supply to the District must represent your operation for the 2019 calendar year. Please note, the included questionnaires are general in nature and not all questions may apply to the permitted unit(s) listed. **Answer only those questions that are applicable.**

Please return the completed questionnaire by **June 1, 2020** using one of these methods:

Address:
SJVAPCD
Attn: Emission Inventory
1990 E. Gettysburg Ave.
Fresno, CA 93726

FAX:
(559) 230-6061

Email:
inventory@valleyair.org

If you have any questions, please contact the Emission Inventory group at (559) 230-6000 or inventory@valleyair.org.
BIG VALLEY FORD
PO BOX 10398
STOCKTON, CA 95210

FACILITY ID#: N-112
TAD #:
SIC #: 5511
PHONE #: (209) 870-4352

SITE ADDRESS: 3282 AUTO CENTER DR, STOCKTON

| Is this information considered: | [] CONFIDENTIAL | [] NOT CONFIDENTIAL |

Note: All requests for confidentiality must be supported by a written justification (Title 17, section 91010, California Administrative Code)

WorkSheet for Permit #: N-112-1-2

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION WITH A PAINT SPRAY BOOTH WITH DRY EXHAUST FILTERS AND A PERMIT EXEMPT NATURAL GAS-FIRED BOOTH HEATER (LESS THAN 20.0 MMBTU/DAY HEAT INPUT)

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION
Please provide the total number of gallons of each material category (as applied including catalysts reducers, etc) used for the year. Also provide the VOC content (excluding water and exempt compounds) of each material in pounds per gallon, and the total pounds of VOC for each category of material used for the year (Lbs of VOC = Gallons Used x VOC Content).

Annual Process Data for Coating Operations:

<table>
<thead>
<tr>
<th>Material Category</th>
<th>Gallons Used</th>
<th>VOC Content (lb/gal)</th>
<th>Lbs of VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Coating</td>
<td>105.70</td>
<td>1.57</td>
<td>120.89</td>
</tr>
<tr>
<td>Color Coating</td>
<td>109.02</td>
<td>1.32</td>
<td>140.90</td>
</tr>
<tr>
<td>Single-Stage Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Color Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion Promotor</td>
<td>INCL</td>
<td>PRIMER</td>
<td></td>
</tr>
<tr>
<td>Primers</td>
<td>46.94</td>
<td>1.46</td>
<td>42.37</td>
</tr>
<tr>
<td>Primer Sealer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Protective Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform Finish Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck Bed Liner Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underbody Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Other Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean up/Wipe-Down Solvent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Do not include acetone)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If fuel is burned for curing any coating or incinerating vapors, circle fuel type, fill in quantity of
Fuel burned, and circle appropriate units:
Fuel Type: (Natural Gas, LPG, Diesel): **BTU** (SCF, BTU, Therms, Gals)

For equipment (i.e. spray booth) with regular operating schedule:
Hours/Day: **35** Days/Week: **50** Weeks/Year: **52**

Comments: ___
SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT

1990 E. Gettysburg Ave., Fresno, CA 93726
(559) 230 - 6000 FAX: (559) 230 - 6061
District BCode 7

SURVEY FOR THE ANNUAL EMISSION INVENTORY : 2019

BIG VALLEY FORD
PO BOX 10398
STOCKTON, CA 95210

FACILITY ID# : N-112
TAD #:
SIC #: 5511
PHONE #: (209) 870-4352

SITE ADDRESS : 3282 AUTO CENTER DR, STOCKTON

Note: All requests for confidentiality must be supported by a written justification (Title 17, section 91010, California Administrative Code)

Worksheet for Permit #: N-112-4-0

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION WITH A PAINT SPRAY BOOTH WITH EXHAUST FILTERS AND AN ELECTRIC HEATER

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION
Please provide the total number of gallons of each material category (as applied including catalysts reducers, etc) used for the year. Also provide the VOC content (excluding water and exempt compounds) of each material in pounds per gallon, and the total pounds of VOC for each category of material used for the year (Lbs of VOC = Gallons Used x VOC Content).

<table>
<thead>
<tr>
<th>Material Category</th>
<th>Gallons Used</th>
<th>VOC Content (lb/gal)</th>
<th>Lbs of VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Coating</td>
<td>105.70</td>
<td>0.57</td>
<td>60.39</td>
</tr>
<tr>
<td>Color Coating</td>
<td>109.08</td>
<td>0.32</td>
<td>69.60</td>
</tr>
<tr>
<td>Single-Stage Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Color Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion Promotor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primers</td>
<td>46.09</td>
<td>0.96</td>
<td>42.37</td>
</tr>
<tr>
<td>Primer Sealer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Protective Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform Finish Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck Bed Liner Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underbody Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Other Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean up/Wipe-Down Solvent</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>(Do not include acetone)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If fuel is burned for curing any coating or incinerating vapors, circle fuel type, fill in quantity of...
Fuel burned, and circle appropriate units:
Fuel Type: (Natural Gas, LPG, Diesel): _____ (SCF, BTU, THms, Gals)
For equipment (i.e. spray booth) with regular operating schedule:
Hours/Day: 3.5 Days/Week: 5 Weeks/Year: 52
Comments:___
BIG VALLEY FORD
PO BOX 10398
STOCKTON, CA 95210

FACILITY ID#: N-112
TAD #:
SIC #: 5511
PHONE #: (209) 870-4352

SITE ADDRESS: 3282 AUTO CENTER DR, STOCKTON

Note: All requests for confidentiality must be supported by a written justification (Title 17, section 91010, California Administrative Code)

Worksheet for Permit #: N-112-5-0

GASOLINE DISPENSING OPERATION WITH ONE 1,000 GALLON CONVAULT ABOVEGROUND STORAGE TANK SERVED BY OPW PHASE I EVR SYSTEM (VR-401-B), STANDING LOSS CONTROL (VR-302-C), AND 1 FUELING POINT WITH 1 GASOLINE DISPENSING NOZZLE SERVED BY BALANCE PHASE II VAPOR RECOVERY SYSTEM (G-70-116-F)

GASOLINE DISPENSING
Annual Throughput Rates
Gallons of Gasoline Dispensed (not including diesel): 68,480.80

Comments: ____________________________
Facility Wide Relative Monthly Activity

If the facility has same operating schedule year round, then please check the Default Monthly Activity box. Otherwise, provide the percentage and months the facility operates. The total percentage for the year must add up to 100%. (100% /12 = 8.3)

<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT MONTHLY ACTIVITY</td>
<td>8.3</td>
</tr>
<tr>
<td>RELATIVE MONTHLY ACTIVITY</td>
<td></td>
</tr>
</tbody>
</table>

Facility Daily Schedule

Please indicate with circles the normal operating schedule:

Hours per day: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Days per week: Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Responsible Official Information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility ID</td>
<td>N-112</td>
</tr>
<tr>
<td>Facility</td>
<td>BIG VALLEY FORD</td>
</tr>
<tr>
<td>Questionnaire Answered By, Title</td>
<td>Mike Baltzer, Parts Manager</td>
</tr>
<tr>
<td>Telephone Number</td>
<td>(209) 870-4352</td>
</tr>
<tr>
<td>Responsible Official</td>
<td>Mike Baltzer</td>
</tr>
<tr>
<td>Responsible Official Telephone Number</td>
<td>(209) 870-4352</td>
</tr>
<tr>
<td>Responsible Official Signature</td>
<td>Mike Baltzer</td>
</tr>
<tr>
<td>Date</td>
<td>5/28/2020</td>
</tr>
</tbody>
</table>
Emission Inventory - Calendar Year 2018 Survey

Facility ID: N-3308
TAD:
SIC: 5541
Facility Name: CHASE CHEVROLET
Toxic ID:
Confidential
Process Rates:

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Process Number</th>
<th>Process Type</th>
<th>Process Rate</th>
<th>Process Units</th>
<th>Process Material</th>
<th>Dist. to Business (ft.)</th>
<th>Dist. to Residence (ft.)</th>
<th>Dist. to School (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fuel dispensing</td>
<td>4505.00</td>
<td>Gallons</td>
<td>Gasoline</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>N/A</td>
<td>0.00</td>
<td>Gallons</td>
<td>Gasoline</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>N/A</td>
<td>0.00</td>
<td>Gallons</td>
<td>Gasoline</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Contact
Company: CHASE CHEVROLET
Address: PO BOX 8349
City, State, Zip: STOCKTON, CA 95208
Telephone: (209) -475-6640
E-mail: alexr947@aol.com
Location of facility if different from above: 6441 HOLMAN RD, STOCKTON, CA 95212

Name and Title of Responsible Official
Name:
Title:
By checking this box, I certify that the information contained in the Emissions Survey is accurate to the best of my knowledge.
To: Fred Cruz – Permit Services
From: Tadeh Issakhanian – Technical Services
Date: April 25, 2016
Facility Name: Big Valley Ford, Inc.
Location: 3282 Auto Center Drive, Stockton
Application #(s): N-112-1-2
Project #: N-1161249

A. RMR SUMMARY

<table>
<thead>
<tr>
<th>Categories</th>
<th>Auto Coating (Unit 1-2)</th>
<th>Project Totals</th>
<th>Facility Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritization Score</td>
<td>39</td>
<td>>1.0</td>
<td>>1.0</td>
</tr>
<tr>
<td>Acute Hazard Index</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Chronic Hazard Index</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum Individual Cancer Risk</td>
<td>1.48E-08</td>
<td>1.48E-08</td>
<td>1.48E-08</td>
</tr>
<tr>
<td>T-BACT Required?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Permit Requirements?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed Permit Requirements

To ensure that human health risks will not exceed District allowable levels and to implement the Airborne Toxic Control Measure (ATCM) for Emissions of Hexavalent Chromium and Cadmium from Motor Vehicle and Mobile Equipment Coatings, the following permit requirements must be included for:

Unit 1-0

1. No coatings, solvents, or additives containing hexavalent chromium or cadmium shall be used.
2. No coatings, solvents, or additives containing lead or nickel shall be used.
3. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.

T-BACT is required for this unit because of emissions of Ethyl Benzene which is a VOC.
B. RMR REPORT

I. Project Description

Technical Services received a request on April 13, 2016, to perform a Risk Management Review for a proposed modification to a paint spray booth. The modification consisted of the installation replacing an existing paint spray booth with a new paint spray booth. The new paint spray booth is an enclosed paint spray booth with dry filters and a 1.2 MMBtu/hr natural gas fired booth heater. The applicant is not proposing to modify the current daily VOC limit of 54.7 lbs for this refinishing operation or the current facility-wide VOC emissions limit not to exceed 19,708 lbs. The applicant has also agreed to limit the daily natural gas input to 20.0 mmbtu/day.

II. Analysis

The MSDS sheets for the coatings used in the operation were reviewed by CAS# for Hazardous Air Pollutants (HAPs). The values were entered into the Autobody Shop coating spreadsheet to calculate the HAPs' emissions and Toxic emissions for this proposed unit were calculated using 2001 Ventura County's Air Pollution Control District's emission factors for Natural Gas Fired external combustion, and input into the San Joaquin Valley APCD's Hazard Assessment and Reporting Program (SHARP). In accordance with the District's Risk Management Policy for Permitting New and Modified Sources (APR 1905, May 28, 2015), risks from the proposed unit's toxic emissions were prioritized using the procedure in the 1990 CAPCOA Facility Prioritization Guidelines. The prioritization score for the facility is greater than 1.0 (see RMR Summary Table). Therefore, a refined health risk assessment was required. The AERMOD model was used, with the parameters outlined below and meteorological data for 2010-2014 from Stockton to determine the dispersion factors (i.e., the predicted concentration or X divided by the normalized source strength or Q) for a receptor grid. These dispersion factors were input into the SHARP Program, which then used the Air Dispersion Modeling and Risk Tool (ADMRT) of the Hot Spots Analysis and Reporting Program Version 2 (HARP 2) to calculate the chronic and acute hazard indices and the carcinogenic risk for the project.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
<th>Unit 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Point</td>
</tr>
<tr>
<td>Stack Height (m)</td>
<td>6.1</td>
</tr>
<tr>
<td>Stack Diameter. (m)</td>
<td>0.86</td>
</tr>
<tr>
<td>Stack Exit Velocity (m/s)</td>
<td>1.86</td>
</tr>
<tr>
<td>Stack Exit Temp. (°K)</td>
<td>298</td>
</tr>
<tr>
<td>NG Usage (MMscf/hr)</td>
<td>0.00120</td>
</tr>
</tbody>
</table>
III. Conclusion

The acute and chronic indices are below 1.0 and the cancer risk associated with the project is greater than 1.0 in a million, but less than 20 in a million. **In accordance with the District’s Risk Management Policy, the project is approved with Toxic Best Available Control Technology (T-BACT).**

To ensure that human health risks will not exceed District allowable levels; the permit requirements listed on page 1 of this report must be included for this proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

IV. Attachments

A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Prioritization score w/ toxic emissions summary
D. Facility Summary
San Joaquin Valley Air Pollution Control District
Risk Management Review

To: Fred Cruz – Permit Services
From: Eddie Arredondo – Technical Services
Date: August 8, 2018
Facility Name: Big Valley Ford
Location: 3282 Auto Center Circle
Application #(s): N-112-6-0
Project #: N-1182484

A. RMR SUMMARY

<table>
<thead>
<tr>
<th>Units</th>
<th>Prioritization Score</th>
<th>Acute Hazard Index</th>
<th>Chronic Hazard Index</th>
<th>Maximum Individual Cancer Risk</th>
<th>T-BACT Required?</th>
<th>Special Permit Requirements?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 6-0 (Paint Booth with NG Heater)</td>
<td>7.26</td>
<td>0.01</td>
<td>0.02</td>
<td>2.25E-07</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Project Totals</td>
<td>7.26</td>
<td>0.01</td>
<td>0.02</td>
<td>2.25E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Totals</td>
<td>>1</td>
<td>0.03</td>
<td>0.02</td>
<td>2.40E-07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed Permit Requirements

To ensure that human health risks will not exceed District allowable levels; the following shall be included as requirements for:

To ensure that human health risks will not exceed District allowable levels and to comply with the Airborne Toxic Control Measure (ATCM) for Emissions of Hexavalent Chromium and Cadmium from Motor Vehicle and Mobile Equipment Coatings; the following permit conditions must be included for:

Unit # 6-0

1. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.
2. (Revised 4442) No coatings, solvents, or additives containing hexavalent chromium or cadmium shall be used. [District Rule 4102]
3. No coatings, solvents, or additives containing lead or nickel shall be used. [District Rule 4102]
B. RMR REPORT

I. Project Description

Technical Services received a request on August 6, 2018, to perform a Risk Management Review for a proposed installation of a new paint spray booth with dry filters. The daily VOC emissions limit for this facility will be limited to 54.7 lb-VOC per day.

II. Analysis

The SDS sheets for the coatings used in the operation were reviewed by CAS# for Toxic Air Contaminants (TACs). The values were entered into the Autobody Shop coating spreadsheet to calculate the TACs’ emissions, and input into the San Joaquin Valley APCD’s Hazard Assessment and Reporting Program (SHARP). In accordance with the District’s Risk Management Policy for Permitting New and Modified Sources (APR 1905, May 28, 2015), risks from the proposed unit’s toxic emissions were prioritized using the procedure in the 1990 CAPCOA Facility Prioritization Guidelines. (The prioritization score for this proposed facility was greater than 1.0 (see RMR Summary Table). Therefore, a refined health risk assessment was required. The AERMOD model was used, with the parameters outlined below and meteorological data for 2013-2017 from Stockton to determine the dispersion factors (i.e., the predicted concentration or X divided by the normalized source strength or Q) for a receptor grid. These dispersion factors were input into the SHARP Program, which then used the Air Dispersion Modeling and Risk Tool (ADMRT) of the Hot Spots Analysis and Reporting Program Version 2 (HARP 2) to calculate the chronic and acute hazard indices and the carcinogenic risk for the project.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 6-0</td>
</tr>
<tr>
<td>Source Type</td>
</tr>
<tr>
<td>Point</td>
</tr>
<tr>
<td>Location Type</td>
</tr>
<tr>
<td>Urban</td>
</tr>
<tr>
<td>Stack Height (m)</td>
</tr>
<tr>
<td>8.23</td>
</tr>
<tr>
<td>Closest Receptor (m)</td>
</tr>
<tr>
<td>45.72</td>
</tr>
<tr>
<td>Stack Diameter. (m)</td>
</tr>
<tr>
<td>0.86</td>
</tr>
<tr>
<td>Type of Receptor</td>
</tr>
<tr>
<td>Business</td>
</tr>
<tr>
<td>Stack Exit Velocity (m/s)</td>
</tr>
<tr>
<td>9.66</td>
</tr>
<tr>
<td>VOC Emission (lb/day)</td>
</tr>
<tr>
<td>54.7</td>
</tr>
<tr>
<td>VOC Emission (lb/year)</td>
</tr>
<tr>
<td>19966</td>
</tr>
<tr>
<td>NG Usage (mmscf/hr)</td>
</tr>
<tr>
<td>0.0012</td>
</tr>
<tr>
<td>NG Usage (mmscf/yr)</td>
</tr>
<tr>
<td>10.512</td>
</tr>
</tbody>
</table>

III. Conclusion

The acute and chronic indices are below 1.0 and the cancer risk associated with the project is greater than 1.0 in a million, but less than 20 in a million. In accordance with the District’s Risk Management Policy, the project is approved with Toxic Best Available Control Technology (T-BACT).

To ensure that human health risks will not exceed District allowable levels; the permit requirements listed on page 1 of this report must be included for this proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.
IV. Attachments

A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Prioritization score w/ toxic emissions summary
D. Facility Summary
Connie Cochran

From: Even Marcelo
Sent: Wednesday, March 3, 2021 5:34 PM
To: Dodgie Vidad
Subject: FW: [EXT] Auto Center Drive - Traffic Study ETA
Attachments: 11222590-MEM001.pdf; 20-10384 Auto Center Drive Mobile Home HRA.pdf

FYI

- Even

From: Tristan Osborn <Tristan.Osborn@stocktonca.gov>
Sent: Tuesday, February 16, 2021 8:25 AM
To: Even Marcelo <Even.Marcelo@stocktonca.gov>; Dodgie Vidad <Dodgie.Vidad@stocktonca.gov>
Cc: Michael McDowell <Michael.McDowell@stocktonca.gov>
Subject: FW: [EXT] Auto Center Drive - Traffic Study ETA

Even/Dodgie –

Please see attached traffic study. The consultant has requested a one-week turnaround, but please let me know if you need a couple extra days to review. Please send any comments/edits in whatever format is easiest for you. Thanks!

- Tristan

Tristan J. Osborn
SENIOR PLANNER, ADVANCED PLANNING
Direct: 209.937.8569
tristan.osborn@stocktonca.gov

For the City of Stockton Updates on COVID-19, please visit:
Twitter @stocktonUpdates
Facebook @CityofStockton

City Website http://www.stocktonca.gov

From: Matthew Maddox <mmaddox@rinconconsultants.com>
Sent: Thursday, February 11, 2021 9:56 AM
To: Tristan Osborn <Tristan.Osborn@stocktonca.gov>; Kari Zajac <kzajac@rinconconsultants.com>
Cc: Matt Diaz <Matt.Diaz@stocktonca.gov>; Michael McDowell <Michael.McDowell@stocktonca.gov>
Subject: RE: [EXT] Auto Center Drive - Traffic Study ETA

CAUTION: This email originated from outside the City of Stockton. Do not click any links or open attachments if this is unsolicited email.

Tristan,

Attached is the traffic memorandum GHD prepared. You can send to the engineering team to review when they are ready. If you or the engineering team has questions, let me know and I can share with GHD (Rosanna and Todd).
Also, attached is the HRA for Air Quality that we prepared. Let us know any questions/clarifications or if we can provide anything else.

Matt Maddox, AICP, Principal
Rincon Consultants, Inc.
Environmental Scientists | Planners | Engineers
916-706-1374 x250
916-204-9142 Mobile
rinconconsultants.com

CAUTION: This email originated from outside of Rincon Consultants. Be cautious before clicking on any links, or opening any attachments, until you are confident that the content is safe.

Matthew –

I hope all is well. I know we were hoping to have the traffic study this week; are we still on track for that? I want to give our engineering team a head’s up on when they can expect the review period to start. Thanks!

- Tristan

Tristan J. Osborn
SENIOR PLANNER, ADVANCED PLANNING
Direct: 209.937.8569
tristan.osborn@stocktonca.gov

For the City of Stockton Updates on COVID-19, please visit:
Twitter @stocktonUpdates
Facebook @CityofStockton
City Website http://www.stocktonca.gov
February 8, 2021

To: Rincon Consultants
From: Todd Tregenza, AICP
Rosanna Southern, EIT

Ref/Job No.: 11222590

Subject: Traffic Impact Analysis and Supplemental Operational Analysis

1. Introduction

The City of Stockton has tasked GHD, Inc., sub-consultant to Rincon Consultants, with performing a vehicle miles traveled (VMT) impact analysis and operational analysis of the proposed Stockton Auto Center Circle Mobile Home Park development, hereafter referred to as the “Project”, pursuant to SB 743 and local policy. Under SB 743, Level of Service (LOS) is no longer considered as the metric for environmental transportation impacts under the California Environmental Quality Act (CEQA), but rather VMT. This memorandum also includes traffic operational analysis results with LOS as the metric, consistent with City of Stockton Transportation Impact Analysis Guidelines (2003).

The proposed Project, which consists of 316 mobile home dwelling units, is in the northeastern portion of the City on a currently vacant property west of Holman Road at Auto Center Circle. Single-family homes abut the Project site to the south. The Stockton Auto Mall and related auto-oriented/commercial land uses are located to the north of the Project site. Automobile dealerships abut the Project’s eastern boundary and front Holman Road. This Project will require a General Plan amendment and proposes to change the Project site’s land use designation from Low Density Residential to Medium Density Residential. Figure 1.1 presents the study area map and project location.

This technical memorandum has been prepared to conduct the transportation impact analysis for the proposed project, document the technical data and methodologies utilized in the VMT and LOS analyses, and serve as a technical supplement to the environmental document. As part of this study, GHD has reviewed available guidance and documentation from the City of Stockton to identify any draft or advisory VMT baseline estimates and/or threshold recommendations. In coordination with City staff, and absent adopted or guiding threshold values, GHD has presumed a reduction of 15% below regional baseline as the VMT impact threshold consistent with the Governor’s Office of Planning and Research (OPR) Technical Advisory On Evaluating Transportation Impacts in CEQA (December 2018) and CEQA guidelines. Based on coordination with the City of Stockton, the San Joaquin Council of Governments Regional Travel Demand Model (SJCORG RTDM, 2019) was utilized to estimate baseline and project-level VMT per capita.
2. VMT Regulatory Framework & Methodology

SB 743 was signed into law in 2013, with the intent to better align California Environmental Quality Act (CEQA) practices with statewide sustainability goals related to efficient land use, greater multi-modal choices, and greenhouse gas reductions. The provisions of SB 743 became effective statewide on July 1, 2020. Under SB 743, automobile delay, traditionally measured as level of service (LOS), is no longer considered an environmental impact under CEQA. Instead, impacts are determined by changes to VMT.

VMT measures the number and length of vehicle trips made on a daily basis. VMT is a useful indicator of overall land use and transportation efficiency, where the most efficient system is one that minimizes VMT by encouraging shorter vehicle trip lengths, more walking and biking, or increased carpooling and transit. Measuring VMT requires estimating or measuring the full length of vehicle trips by purpose, such as commute trips or shopping trips that often cross between cities, counties, or states. For this reason, regional travel demand models, “big data,” and household travel surveys that are less limited by local agency boundaries are the preferred tools to estimate VMT under SB 743.

2.1 VMT Threshold

In December 2018, OPR released its Technical Advisory on Evaluating Transportation Impacts in CEQA (OPR’s Technical Advisory). OPR’s Technical Advisory identifies recommended VMT thresholds for different land use types, and screening criteria. Generally, OPR recommends a reduction of 15% or more in Baseline VMT per capita as the impact threshold for residential-based developments, as stated below. Residential development that would generate vehicle travel that is 15 or more percent below the existing residential VMT per capita, measured against the region or city, may indicate a less-than-significant transportation impact.

“Recommended threshold for residential projects: A proposed project exceeding a level of 15 percent below existing VMT per capita may indicate a significant transportation impact. Existing VMT per capita may be measured as regional VMT per capita or as city VMT per capita. Proposed development referencing a threshold based on city VMT per capita (rather than regional VMT per capita) should not cumulatively exceed the number of units specified in the Sustainable Communities Strategy (SCS) for that city, and should be consistent with the SCS.”

The City of Stockton 2018 Adopted General Plan makes reference to SB 743, and the need to measure the traffic impacts of future projects with VMT as a significance metric. However, the City has yet to establish VMT guidance and significance thresholds. The City is currently in the process of establishing VMT guidance and/or policies for implementing SB 743. In coordination with the City of Stockton, and in absence of adopted or guiding VMT threshold values for the City, the VMT analysis utilizes the recommended threshold of 15% below baseline (existing) regional VMT per capita for Project impact determination.

2.2 OPR Recommended Screening Thresholds

OPR’s Technical Advisory lists the following screening thresholds for land use projects. These types of development projects are presumed to have a less than significant impact on VMT and therefore, a less than significant adverse impact on transportation. OPR’s Technical Advisory suggests that lead agencies may screen out VMT impacts using project size, maps, transit availability, and provision of affordable housing.
• Projects that are consistent with the Sustainable Communities Strategy (SCS) or General Plan and generate or attract fewer than 110 daily trips (per CEQA).

• Map-based screening for residential and office projects located in low VMT areas, and incorporate similar features (density, mix of uses, transit accessibility).

• Certain projects within ½ mile of either an existing major transit stop\(^1\) or an existing stop along a high-quality transit corridor\(^2\) (CEQA Guidelines Section 15064.3, subdivision (b)(1)). However, this will not apply if information indicates that the project will still generate high levels of VMT.

• Affordable Housing Development in infill locations.

• Locally-serving retail projects, typically less than 50,000 square feet (does not apply to this Project).

The proposed Project is considered affordable housing, and it is in an infill location. OPR’s Technical Advisory has the following criteria for screening affordable housing:

Presumption of Less Than Significant Impact for Affordable Residential Development

“Adding affordable housing to infill locations generally improves jobs-housing match, in turn shortening commutes and reducing VMT. Further, “… low-wage workers in particular would be more likely to choose a residential location close to their workplace, if one is available.”\(^3\) In areas where existing jobs-housing match is closer to optimal, low income housing nevertheless generates less VMT than market-rate housing. Therefore, a project consisting of a high percentage of affordable housing may be a basis for the lead agency to find a less-than-significant impact on VMT. Evidence supports a presumption of less than significant impact for a 100 percent affordable residential development (or the residential component of a mixed-use development) in infill locations. Lead agencies may develop their own presumption of less than significant impact for residential projects (or residential portions of mixed-use projects) containing a particular amount of affordable housing, based on local circumstances and evidence. Furthermore, a project which includes any affordable residential units may factor the effect of the affordability on VMT into the assessment of VMT generated by those units.”

The proposed Project could be presumed to have a less than significant impact on VMT, under OPR’s Technical Advisory, due to it being 100 percent affordable housing in an infill location. However, the City has not identified these criteria based on local circumstances and evidence. Additionally, the Project is located within a ½ mile of an existing stop along a high-quality transit corridor. San Joaquin Regional Transit District maintains and operates fixed bus Route 43, which has a stop at Hammer Lane and Holman Road, and has 14-15 minute headways in both directions during peak commute hours. Therefore, this Project could be presumed to cause a less than significant transportation impact, under OPR’s Technical Advisory. However,

\(^1\) “major transit stop” - A major transit stop is a “site containing an existing rail, a ferry terminal served by bus or rail transit service, or intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during morning and evening peak hour commute”. OPR, 2018.

\(^2\) Pub. Resources Code, § 21155 (“For purposes of this section, a high-quality transit corridor means a corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.”).

\(^3\) Karner and Benner (2015) *Low-wage jobs-housing fit: identifying locations of affordable housing shortages.*
for thoroughness, a VMT impact analysis has been performed to confirm if the project-specific or location-specific information would generate significant levels of VMT.

2.3 CEQA Baseline Considerations

Under CEQA, project impacts must be evaluated by comparing environmental conditions after project implementation to conditions at a point in time referred to as the baseline. The CEQA Guidelines Section 15125 provides the following guidance for establishing the baseline:

> “An EIR must include a description of the physical environmental conditions in the vicinity of the project. This environmental setting will normally constitute the baseline physical conditions by which a lead agency determines whether an impact is significant. [...] The purpose of this requirement is to give the public and decision makers the most accurate and understandable picture practically possible of the project’s likely near-term and long-term impacts.”

The CEQA Guidelines goes on to state that generally, the baseline is the environmental condition that exists at the time the notice of preparation is published or environmental analysis is commenced, from both a local and regional perspective. However, a lead agency may define the baseline by referencing historic conditions, as long as substantial evidence is provided that such a baseline is necessary to provide the most accurate picture practically possible of the project’s impacts given that existing conditions change or fluctuate over time.

The baseline provided in this memorandum is estimated for the region, from the most recently updated SJCOG Travel Demand Model.

2.4 VMT Methodology

2.4.1 City of Stockton Model

The City of Stockton General Plan Travel Demand Model (Stockton Model, 2017) is a trip-based model that utilizes the traditional four-step travel demand modelling method, a standard modelling process that uses land use inputs to determine trip generations and attractions, trip distribution, mode choice, and trip assignment. This model was considered for estimation of baseline VMT and project-level VMT estimates. However, the model boundary is limited by the City’s planning area (General Plan area) and does not account for the full length of trips with origins and destinations outside of the model boundary.

2.4.2 SJCOG Regional Travel Demand Model

The baseline provided in this memorandum is estimated from the most recently updated SJCOG Regional Travel Demand Model (SJCOG RTDM, VMIP-2, 2019), which has a base year of 2015 and a forecast year of 2045. The SJCOG RTDM utilizes the traditional four-step travel demand modelling method, and covers San Joaquin County, Merced County, and Stanislaus County. This tri-county model processes land use data to produce trips by different trip purposes and modes. It outputs VMT throughout the model boundary and represents interregional travel. The SJCOG Model base year 2015 was utilized to estimate regional baseline Residential VMT, including cities. To estimate trips associated with Residential VMT, all home-based
vehicular trips were selected for a trip-based evaluation of VMT. The model’s socioeconomic inputs were utilized to estimate regional population and calculate VMT per capita.

County External Trips

The SJCOG model inputs and trip purposes for evaluation of VMT is limited to the boundary of the model area. To estimate baseline VMT, the total trip lengths of trips with origins or destinations outside of the model boundary must be accounted for. Each of the model’s external gateways has an assigned link distance, and accurately represents the average distance travelled for trips beyond the model boundary, based on local and interregional commute patterns and census data. By accounting for the assigned link distances, the baseline VMT calculation includes the full trip lengths of internal-external and external-internal trips.

Project-Level VMT

Project-level VMT was estimated using the SJCOG model, based on the average length of residential-based trips from the traffic analysis zone (TAZ) containing the Project site. Then the trip generation, calculated in this memorandum, was multiplied by this average trip length to determine the total Project VMT. The total VMT was divided by the estimated Project population to arrive at the VMT per capita.

3. **Project Description**

The Project proposes to develop a mobile home park at an approximately 18.52-acre site, consisting of three vacant parcels located at the western terminus of Auto Center Circle (private street), and 316 dwelling units per the Site Plan. Figure 3.1 presents the project Site Plan.

3.1 **Project Site Access**

The proposed site will provide one main access point via Auto Center Circle, through a gated access at the eastern border of the Project site, and a secondary access further east than the gated access. Several driveways within the Project site along Auto Center Circle will provide access to parking areas interior to the development. The Site Plan also shows on-street parking along Auto Center Circle.
Phase 1, 51 lots
Phase 2, 95 lots
Phase 3, 170 lots

2871 AUTO CENTER CIR,
PARCEL ID 128-030-01
PHASE 1

2010 AUTO CENTER CIR,
PARCEL ID 128-030-03
CONCEPTUAL PHASE 3

2733 AUTO CENTER CIR,
PARCEL ID 128-030-04
CONCEPTUAL PHASE 2

City of Stockton
Stockton Auto Center Circle Mobile Home Project
Project Site Plan

DEVELOPER
BAY AREA HOME OPTIONS, INC.
SHAWN BOWLES
1730 NINTH STREET
BERKELEY, CA 94710
OFFICE: (510) 524-9249

11222590
MEM001
JAN 2021

FIGURE 3.1
3.2 Triplet Generation

Project trip generation has been estimated for the total number of dwelling units, 316 per the Site Plan. The daily and peak hour trip generation estimations were achieved by utilizing the Institute of Transportation Engineers (ITE) publication *Trip Generation Manual (10th Ed.)*. Trip rates for the 316 dwelling units used the Land Use Code 240 for Mobile Home Park. In addition to the proposed Project, an estimation of trips generated for the current General Plan land use and zoning designation has been included for comparison. The current General Plan land use and zoning designation for the project site is Low Density Residential, which has a maximum density of 8.7 dwelling units per acre per the City’s Municipal Code. Based on the site size of 18.52 acres, an estimated 161 single-family dwelling units would be allowed within the Low Density Residential designation.

Table 3.1 presents the Project trip generation, the trip generation under General Plan land use and zoning, and the difference between the two. As shown, the Project trip generation is 1,580 daily trips, 82 trips in the AM peak hour, and 145 trips in the PM peak hour. The Project is estimated to generate approximately 60 additional daily trips compared to the General Plan land use.

Table 3.1 Project Trip Generation

<table>
<thead>
<tr>
<th>Land Use Category (ITE Code)</th>
<th>Unit1</th>
<th>Daily Trip Rate/Unit2</th>
<th>AM Peak Hour Trip Rate/Unit</th>
<th>PM Peak Hour Trip Rate/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>In %</td>
<td>Out %</td>
<td>Total</td>
</tr>
<tr>
<td>Single-Family Detached Housing (210)</td>
<td>DU</td>
<td>9.44</td>
<td>0.74</td>
<td>25%</td>
</tr>
<tr>
<td>Mobile Home Park (240)</td>
<td>DU</td>
<td>5.00</td>
<td>0.26</td>
<td>31%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Quantity (Units)</th>
<th>Daily Trips</th>
<th>AM Peak Hour Trips</th>
<th>PM Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Plan Land Use (Low Density Residential)</td>
<td>161</td>
<td>1,520</td>
<td>119</td>
<td>30</td>
</tr>
<tr>
<td>Mobile Home Park</td>
<td>316</td>
<td>1,580</td>
<td>82</td>
<td>25</td>
</tr>
<tr>
<td>Comparison Between Land Uses</td>
<td>155</td>
<td>60</td>
<td>-37</td>
<td>-5</td>
</tr>
</tbody>
</table>

Notes:
1. 1 ksf = 1,000 square feet
2. DU = dwelling unit
3. Trip rates based on ITE Trip Generation Manual 10th edition average rates

3.3 Trip Distribution & Assignment

The trip distribution and assignment described below are used only for the operational (LOS) analysis. Existing average daily traffic (ADT) volumes presented in the General Plan EIR were used to estimate the portion of trips travelling in each direction to and from the Project site and along the study roadway segments. Figure 3.2 presents the trip distribution for the Project-generated trips.
To calculate trip assignment, the trip distribution was applied to the estimated Project trip generation to determine the Project trips that travel in each direction. Table 3.2 presents the project-generated trips assigned to the adjacent roadways, for both Existing and Cumulative scenarios.

Table 3.2 Project Trip Assignment

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Location</th>
<th>% Distribution</th>
<th>Existing</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holman Road</td>
<td>south of Auto Center Circle*</td>
<td>10%</td>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>Holman Road</td>
<td>north of Auto Center Circle</td>
<td>90%</td>
<td>1,420</td>
<td>55</td>
</tr>
<tr>
<td>Hammer Lane</td>
<td>west of Holman Road</td>
<td>35%</td>
<td>550</td>
<td>20</td>
</tr>
<tr>
<td>Hammer Lane</td>
<td>east of Holman Road</td>
<td>36%</td>
<td>570</td>
<td>25</td>
</tr>
<tr>
<td>Holman Road</td>
<td>north of Hammer Lane*</td>
<td>19%</td>
<td>300</td>
<td>10</td>
</tr>
</tbody>
</table>

Not a study segment, but shown for reference of distributed trips.

These Project trips were superimposed onto the Existing conditions (2020) traffic volumes to derive the Existing Plus Project traffic volumes. The General Plan's Cumulative (2040) scenario already assumes the Project site would be used for Low Density Residential dwelling units, so to calculate the Cumulative Plus Project traffic volumes on the adjacent roadway segments, the volumes generated by the previously-assumed General Plan land use had to be subtracted from the Cumulative No Project conditions ADT prior to superimposing the added Project trips. The Project trip values for Cumulative conditions shown in Table 3.2 represent the net change in roadway volume that result from this calculation.

4. VMT Analysis

This section presents the various findings of the VMT analyses conducted, based on the methodologies previously described, to evaluate and estimate baseline VMT.

4.1 Baseline VMT

Regional Baseline VMT, population, and VMT per capita information from the SJCOG model is provided in Table 4.1.

Table 4.1 SJCOG Model Baseline VMT Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Total VMT</th>
<th>Population</th>
<th>VMT per Capita</th>
<th>15% Below Baseline Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJCOG Model (Regional)</td>
<td>18,784,680</td>
<td>627,371</td>
<td>29.9</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Based on the Regional model, the Baseline VMT per capita is 29.9 (including Cities), and the 15% below regional baseline threshold for determining Project impact significance is 25.5 VMT per capita.

4.2 Project VMT

Project total VMT is determined by multiplying the Project's trip generation by the average trip length of the model TAZ where the Project is located. The Project population was estimated based on the General Plan rate for average persons per household in the City of Stockton (3.23 persons per household). The total VMT divided by the estimated Project population yields the Project's estimated VMT per capita, which is
compared to the regional threshold to determine impact significance. Table 4.2 presents the Project’s VMT evaluation and estimated VMT per capita compared to the regional threshold.

<table>
<thead>
<tr>
<th>Project</th>
<th>Average Trip Length (mi)</th>
<th>Project Total VMT</th>
<th>Population</th>
<th>Project VMT per Capita</th>
<th>SJCOG Model Regional Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,580</td>
<td>14.3</td>
<td>22,594</td>
<td>1,021</td>
<td>22.1</td>
<td>25.5</td>
</tr>
</tbody>
</table>

As shown, the Project VMT per capita of 22.1 is lower than the estimated Regional threshold, and is presumed to cause a less than significant transportation impact.

5. LOS Analysis Parameters & Methodologies

5.1 Level of Service (LOS) Methodologies

Traffic operations were quantified through the determination of “Level of Service” (LOS). Level of Service is a qualitative measure of traffic operating conditions, whereby a letter grade “A” through “F” is assigned to an intersection, or roadway segment, representing progressively worsening traffic conditions. LOS “A” represents free-flow operating conditions and LOS “F” represents over-capacity conditions. Levels of Service was calculated for all study locations using the methods documented in the Transportation Research Board Publication *Highway Capacity Manual, Sixth Edition*, *A Guide for Multimodal Mobility Analysis*, 2016 (HCM 6).

Table 5.1, presents the LOS traffic volume thresholds in terms of bi-directional average daily traffic (ADT). These thresholds are found in the *Envision Stockton 2040 General Plan Update and Utility Master Plan Supplements Final EIR and Mitigation Monitoring and Reporting Program*.
Table 5.1 Level of Service (LOS) Criteria for Roadways

<table>
<thead>
<tr>
<th>Facility Class & Lanes</th>
<th>Two-way Average Daily Traffic (ADT) Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS A</td>
</tr>
<tr>
<td>6-Lane Freeway</td>
<td>< 41,400</td>
</tr>
<tr>
<td>4-Lane Freeway</td>
<td>< 27,600</td>
</tr>
<tr>
<td>8-Lane Arterial</td>
<td>< 38,100</td>
</tr>
<tr>
<td>6-Lane Arterial</td>
<td>< 28,800</td>
</tr>
<tr>
<td>4-Lane Arterial</td>
<td>< 18,600</td>
</tr>
<tr>
<td>2-Lane Arterial</td>
<td>< 8,400</td>
</tr>
<tr>
<td>4-Lane Collector</td>
<td>< 17,600</td>
</tr>
<tr>
<td>2-Lane Collector</td>
<td>< 6,400</td>
</tr>
</tbody>
</table>

Notes:
1. LOS F is characterized by ADT greater than the threshold listed under ‘LOS E’.
3. All volumes are approximate and assume ideal roadway characteristics. Actual threshold volumes for each Level of Service listed above may vary depending on a variety of factors including (but not limited to) roadway curvature and grade, intersection or interchange spacing, driveway spacing, percentage of trucks and other heavy vehicles, travel lane widths, signal timing characteristics, on-street parking, volume of cross traffic and pedestrians, etc.

5.1.1 Level of Service Policies

City of Stockton

The Envision Stockton 2040 General Plan contains the following Level of Service policy:

Action TR-4.1A

Strive for Level of Service (LOS) D or better for both daily roadway segment and peak hour intersection operations, except when doing so would conflict with other land use, environmental, or economic development priorities...

This policy also includes a list of locations where there are exceptions to the typical LOS threshold of LOS D:

Strive for different LOS standards along the following corridors due to physical constraints that limit the improvements that can be constructed:

- Hammer Lane, West Lane to Holman Road – LOS E

6. Operational (LOS) Analysis

6.1 Existing Conditions

The Existing conditions describe the existing transportation facilities serving the project site and establish the traffic conditions which currently exist for those facilities. Existing conditions is the analysis scenario in which
current operations at study locations are analyzed and establishes the baseline traffic operations for the proposed project impact analysis.

6.1.1 Existing Roadway LOS

Existing weekday daily traffic volumes were derived for 2020 using straight line growth between volumes presented for years 2016 and 2040 in the Envision Stockton 2040 General Plan Final Environmental Impact Report (FEIR, 2018). Table 6.1 presents a summary of the LOS at each study location during the Existing (2020) conditions, with LOS also calculated for the 2016 volumes for comparison.

Table 6.1 Existing Conditions Roadway Operations

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2016 ADT</th>
<th>LOS</th>
<th>2020 ADT Estimate</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>8-Lane Arterial</td>
<td>E</td>
<td>38,240</td>
<td>B</td>
<td>38,851</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>8-Lane Arterial</td>
<td>D</td>
<td>36,690</td>
<td>A</td>
<td>37,277</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>16,570</td>
<td>A</td>
<td>16,836</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.1, all three study roadway locations operate at acceptable LOS under Existing (2020) conditions.

6.1.2 Existing Plus Project Roadway LOS

Existing Plus Project conditions refers to the analysis scenario in which projected trips generated by the proposed project are superimposed onto the existing “background” traffic volumes. Traffic impacts associated with the proposed development are investigated in comparison to the Existing Conditions.

Table 6.2 presents a summary of the LOS at each study location during the Existing Plus Project conditions.

Table 6.2 Existing Plus Project Conditions Roadway Operations

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2020 Plus Project ADT Estimate</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>8-Lane Arterial</td>
<td>E</td>
<td>39,401</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>8-Lane Arterial</td>
<td>D</td>
<td>37,847</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>18,256</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.2, all study roadway locations operate at acceptable LOS under Existing Plus Project conditions.
6.2 Cumulative Conditions

Cumulative conditions refer to the analysis scenario which reflects future conditions represented by local and regional growth in approximately 20 years.

In coordination with the City, the Cumulative conditions scenario is based on the proposed General Plan network, which includes the following roadway improvements:

- Hammer Lane reduced in travel width to 6 lanes
- Holman Road reduced in travel width to 4 lanes

6.2.1 Cumulative Roadway LOS

Table 6.3 presents a summary of the LOS at each study location during the Cumulative No Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2040 ADT General Plan</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>6-Lane Arterial</td>
<td>E</td>
<td>29,200</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>32,500</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>4-Lane Arterial</td>
<td>D</td>
<td>18,150</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.3, all study roadway locations operate at acceptable LOS under Cumulative No Project conditions.

6.2.2 Cumulative Plus Project Roadway LOS

Cumulative Plus Project conditions refers to the analysis scenario in which projected trips generated by the proposed project are superimposed on 2040 No Project traffic volumes and analyzed using the lane geometrics as listed under Cumulative No Project conditions. Table 6.4 presents a summary of the LOS at each study location during the Cumulative Plus Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2040 Plus Project ADT</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>6-Lane Arterial</td>
<td>E</td>
<td>29,220</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>32,525</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>4-Lane Arterial</td>
<td>D</td>
<td>18,155</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.4, all study roadway locations operate at acceptable LOS under Cumulative Plus Project conditions.
7. Conclusion

Based on the VMT analysis contained herein, the proposed Mobile Home Park at Auto Center Circle in Stockton is estimated to have a VMT per capita of 22.1, which is lower than the estimated Regional threshold of 25.5 VMT per capita. Additionally, the Project is an affordable housing project located in an infill location, and is also located within ½ mile of a stop along a high-quality transit corridor. The Project is presumed to cause a less than significant transportation impact.

Based on the operational analysis contained herein, the study locations are anticipated to maintain acceptable level of service with or without the addition of Project traffic under the following scenarios:

- Existing conditions
 - Hammer Lane – LOS A/B
 - Holman Road – LOS A

- Existing Plus Project conditions
 - Hammer Lane – A/B
 - Holman Road – LOS A

- Cumulative No Project conditions
 - Hammer Lane – C/B
 - Holman Road – LOS A

- Cumulative Plus Project conditions
 - Hammer Lane – C/B
 - Holman Road – LOS A
February 11, 2021
Project No. 20-10384
City of Stockton
Planning & Engineering Division
345 North El Dorado Street
Stockton, California 95902
Contact: Matt Diaz, Advanced Planning Manager

Subject: Toxic Air Contaminant Analysis Memorandum for the Auto Center Drive Mobile Home Project

Dear Mr. Diaz:

Rincon has prepared this Toxic Air Contaminant (TAC) Analysis Memorandum for the Auto Center Mobile Home Project (project). This memorandum qualitatively analyses operational health risk impacts from existing TACs upon the project.

Project Description

The approximately 18.5-acre project site is located on Auto Center Circle west of Holman Road, in the northeastern portion of Stockton. The site address is 2733, 2811, 2868, 2871, and 2810 Auto Center Circle, in the City of Stockton, California. The project site is currently vacant.

The project would construct a mobile home park, consisting of 316 units on the project site and 373 surface parking spaces. The project requires an Administrative Use Permit (AUP) per Stockton Municipal Code (SMC) Section 16.20.020, Allowable land uses and permit requirements, and a General Plan Amendment to change the project site’s land use designation from Low Density Residential to Medium Density Residential. SMC Section 16.80.210 includes a requirement for mobile home parks to obtain an AUP and provides standards specific to the use. The site would be gated along Auto Center Circle near the proposed site office.

Background

Air Quality

The project area is located in the San Joaquin Valley Air Basin (SJVAB), which occupies the southern half of the Central Valley and comprises eight counties: San Joaquin, Stanislaus, Fresno, Merced, Madera, Kings, Tulare, and portions of Kern County. The SJVAB is approximately 250 miles long and 35 miles in width (on average) and is bordered by the Coast Range Mountains on the west, the Sierra Nevada mountains on the east, and the Tehachapi Mountains to the south. On the valley floor, the SJVAB is
open only to the north, which heavily influences prevailing winds.1 The San Joaquin Valley Air Pollution Control District (SJVAPCD) is the designated air quality control agency for the SJVAB.

Toxic Air Contaminants

A TAC is an air pollutant that may cause or contribute to an increase in mortality or serious illness or which may pose a present or potential hazard to human health. TACs may result in long-term health effects such as cancer, birth defects, neurological damage, asthma, genetic damage, or short-term acute effects such as eye watering, respiratory irritation, runny nose, throat pain, and headaches. TACs are considered either carcinogenic or non-carcinogenic based on the nature of the health effects associated with exposure. For carcinogenic TACs, potential health impacts are evaluated in terms of overall relative risk expressed as excess cancer cases per one million exposed individuals. Non-carcinogenic TACs differ in that there is generally assumed to be a safe level of exposure below which no negative health impact is believed to occur. These levels are determined on a pollutant-by-pollutant basis.

TACs include both organic and inorganic chemical substances. One of the main sources of TACs in California is diesel engines that emit exhaust containing solid material known as diesel particulate matter (DPM); however, TACs may be emitted from a variety of common sources, including gasoline stations, motor vehicles, dry cleaners, industrial operations, painting operations, and research and teaching facilities.

In 1983, the California Legislature enacted a program to identify the health effects of TACs and to reduce exposure to these contaminants to protect the public health (Assembly Bill [AB] 1807: Health and Safety Code Sections 39650–39674). The Legislature established a two-step process to address the potential health effects from TACs. The first step is the risk assessment (or identification) phase. The second step is the risk management (or control) phase of the process.

The California Air Toxics Program establishes the process for the identification and control of TACs and includes provisions to make the public aware of significant toxic exposures and for reducing risk. Additionally, the Air Toxics "Hot Spots" Information and Assessment Act (AB 2588, 1987, Connelly Bill) was enacted in 1987 and requires stationary sources to report the types and quantities of certain substances routinely released into the air. The goals of the Air Toxics "Hot Spots" Act are to collect emission data, identify facilities having localized impacts, ascertain health risks, notify nearby residents of significant risks, and reduce those significant risks to acceptable levels. The Children's Environmental Health Protection Act, California Senate Bill 25 (Chapter 731, Escutia, Statutes of 1999), focuses on children's exposure to air pollutants. The act requires the California Air Resources Board (CARB) to review its air quality standards from a children's health perspective, evaluate the statewide air quality monitoring network, and develop any additional air toxic control measures needed to protect children's health.

Sensitive Receptors

Some receptors are considered more sensitive than others to air pollutants. The reasons for greater than average sensitivity include pre-existing health problems, proximity to emissions sources, or duration of exposure to air pollutants. Schools, hospitals, and convalescent homes are considered to be relatively sensitive to poor air quality because children, elderly people, and the infirmed are more

susceptible to respiratory distress and other air quality-related health problems than the general public. Residential areas are also considered sensitive to poor air quality because people usually stay home for extended periods of time, with greater associated exposure to ambient air quality. Recreational uses are considered sensitive receptors due to the greater exposure to ambient air quality conditions because vigorous exercise associated with recreation places a high demand on the human respiratory system. The SJVAPCD considers hospitals, schools, parks, playgrounds, daycare centers, nursing homes, convalescent facilities, and residential areas as sensitive receptors. The project would introduce new sensitive receptors to the project site as residents.

Thresholds

The SJVAPCD has specified thresholds from health risk impacts from permitted and non-permitted TAC sources. For carcinogenic (cancer) risk, the threshold is greater than 20 per million. For non-carcinogenic risk (acute and chronic), the threshold is greater than 1. The non-carcinogenic risk threshold is a unitless value. Both thresholds are used for the determination of impacts in this analysis.

Methodology

In the SJVAPCD Guide for Assessing and Mitigating Air Quality Impacts, SJVAPCD has identified two categories for land use projects that have the potential to cause long-term public health risk impacts: Type A and Type B projects. Type A projects are land use projects that place new sources of air toxics within the vicinity of existing receptors. Type B projects are land use projects that place new receptors in the vicinity of existing new sources. For Type A projects, the SJVAPCD has screening tools and modeling guidance to evaluate new sources of TACs. For Type B projects, SJVAPCD recommends using guidance from CARB’s Air Quality and Land Use Handbook: A Community Health Perspective for siting new sensitive receptors within proximity to TAC sources. Advisory recommendations for common sources of TACs are listed in Table 1-1 of the handbook. CARB recommends specific distance between sources to minimize the health risks from TAC sources upon sensitive receptors. The proposed project is a Type B project because it would site new sensitive receptors (i.e. residents) near existing sources. Residential developments are not considered a source of TACs and the project is not categorized as Type A.

To screen out sources of TACs, all potential TAC sources within 1,000 feet of the project boundaries were identified. An influence area of 1,000 feet was used based on the key health findings from the CARB land use handbook, which suggests that adverse health risks are more likely when a receptor is within 1,000 feet of a TAC source. Furthermore, CARB recommends a buffer distance of 1,000 feet for several sources, including distribution centers, rail yards, and chrome palters. A public records request was also submitted to the SJVAPCD to identify and obtain information on permitted stationary sources within 1,000 feet of the project site. The distance between the TAC sources and the project site were then estimated and compared to the applicable CARB distance advisory recommendations.

3 Note that SJVAPCD updated their carcinogenic threshold from 10 in one million to 20 in one million in May 2015. See https://www.valleyair.org/busind/pto/staff-report-5-28-15.pdf
The relevant CARB distance advisory recommendations are listed below:

- **Freeways and High-Traffic Roads:** Avoid siting new sensitive within 500 feet of a freeway, urban roads with 100,000 vehicles per day, or rural roads with 50,000 vehicles per day.

- **Distribution Centers:** Avoid siting new sensitive land uses within 1,000 feet of a distribution center (that accommodates more than 100 trucks per day, more than 40 trucks with operating transport refrigeration units (TRUs) per day, or where TRU unit operations exceed 300 hours per week
 - Take into account the configuration of existing distribution centers and void locating residences and other sensitive land uses near entry and exit points.

- **Rail Yards:** Avoid siting new sensitive land uses within 1,000 feet of a major service and maintenance rail yard.
 - Within one mile of a rail yard, consider possible siting limitations and mitigation approaches.

- **Gasoline Dispensing Facilities:** Avoid siting new sensitive land uses with 300 feet of a large gas station (defined as facility with a throughput of 3.6 million gallons per year or greater). A 50-foot separation is recommended for typical gas dispensing facilities.

Impact Analysis

An initial review of the project area determined that there are no commercial gasoline dispensing facilities, warehouse/distribution centers, nor railyards within 1,000 feet of the project site. In addition, no sources of TACs were identified in the surrounding residential neighborhoods. However, four potential TAC sources were identified. One roadway (Holman Road) and the three SJVAPCD permitted facilities located within the auto dealerships developments are within 1,000 feet of the project site. See Attachment 1 for the Health Risk Assessment screening information.

Mobile Sources

Mobile sources refer to emissions from motor vehicles, including tailpipe and evaporative emissions, and are classified as either on-road or off-road. On-road sources may be legally operated on roadways and highways. Off-road sources include aircraft, ships, trains, and self-propelled construction equipment. The natural environment can also generate air pollutants, such as when high winds suspend fine dust particles. Pollutants emitted by vehicle exhaust are a public health concern. The U.S. EPA has identified six pollutants of highest priority: DPM, acrolein, acetaldehyde, formaldehyde, benzene, and 1,3-buta diene. CARB has identified DPM as the primary airborne carcinogen in the state. A primary source of DPM is exhaust from diesel vehicle traffic on roadways. Exposure to these pollutants from mobile sources can increase the chances of adverse cancer and non-cancer health effects. Therefore, siting new sensitive receptors at further distances from roadways is recommend to reduce exposure from traffic-related emissions.
Holman Road is approximately 200 feet east of the closest project boundary and has average daily traffic of approximately 16,570 vehicles per day. The existing traffic volume is well below the threshold of 100,000 vehicles per day for urban roads. Therefore, the project would comply with CARB’s siting recommendation for freeways and high-traffic roads. Note that roadways, such as Hammer Lane and State Route 99, are not included in this analysis since both roadways are over 1,000 feet from the project site. Hammer Lane is approximately 1,250 feet north and State Route 99 is approximately 0.75 miles east of the project site.

SJVAPCD Permitted Facilities

A public records request was submitted to SJVAPCD to identify permitted stationary sources within 1,000 feet of the project site. SJVAPCD conducted a site review for air toxics within a quarter of a mile of the project site and identified three permitted facilities. SJVAPCD also provided health risk results and gasoline annual throughput rates (i.e. the amount of gasoline dispensed per year). The three permitted facilities within 1,000 feet of the project site include:

1. **Big Valley Ford (3282 Auto Center Drive)** is an auto center dealership that operates two paint spray booth coating operations and a gasoline dispensing facility, not for commercial use. The facility is approximately 120 feet north of the project boundary. The facility has an annual throughput rate of approximately 68,481 gallons per year. From the coating operations, the total approximate cancer risk is from the coating operations is 0.25 per million, the total approximate acute hazard index is 0.05, and the total approximate chronic hazard index is 0.02.

2. **Chase Chevrolet (6441 Holman Road)** is an auto center dealership that operates a gasoline dispensing facility, not for commercial use. The facility is approximately 230 feet northeast of the project boundary. The annual throughput rate is approximately 4,505 gallons per year.

3. **California Car Wash (3434 East Hammer Lane)** is a car washing facility that operates a gasoline dispensing facility. The facility is approximately 970 feet north of the closest project boundary. The annual throughput rate calculated is approximately 3,942,000 gallons per year.

The gasoline dispensing facilities were compared to CARB’s advisory recommendations, while the health risks from paint spray booth coating operations from the Big Valley Ford were compared to the SJVAPCD TAC thresholds. CARB does not have distance recommendations for paint spray booth coating operations. The California Car Wash would be considered a large gas station since its annual throughput of gasoline is greater than 3.6 million gallons per year. However, the California Car Wash is located approximately 970 feet north of the closest project boundary. There is adequate distance between the facility and the proposed project since CARB recommends a 300 feet distance between a sensitive land use and a large gas station. The gas dispensing sources from the Big Valley Ford and the Chase Chevrolet facilities also comply with CARB’s recommendation for typical gas stations since they are over 50 feet from the project site. In addition, the health risks associated with the two paint spray booth operation at the Big Valley Ford facility are 0.25 per million, 0.05 for acute hazard index, and 0.02 for chronic hazard index. These carcinogenic and non-carcinogenic risk and hazard values are below the SJVAPCD thresholds of 20 per million for carcinogenic risks and 1 for non-carcinogenic hazards. Therefore, the

6 Correspondence with Theresa Haywood, Senior Office Assistant San Joaquin Valley Air Pollution Control District. 26 January 2021.

7 Note that this facility is currently named “Zoom Car Wash” but SJVAPCD confirmed that there has been no transfer of ownership for this facility and that this is only a name change.
The project would be sited at an appropriate distance from existing permitted facilities and health risks from the Big Valley Ford would be below the SJVAPCD thresholds.

Conclusion

The project proposes the construction of mobile home residences, which would introduce new sensitive receptors to the project site. A screening analysis was completed to identify all potential TAC sources within 1,000 feet of the project boundaries. CARB’s siting distance recommendations from their land use handbook and the SJVAPCD TAC thresholds were used in this analysis to make impact determinations.

Four potential TAC sources were identified, one mobile source (Holman Road) and three permitted stationary sources. Due to the low traffic volume on Holman Road, the roadway would not be considered a high-traffic roadway and mobile sources were screened out. SJVAPCD provided facility-specific site information that showed that the sources at the three permitted stationary sources are located beyond CARB’s recommended siting distance for gasoline dispensing facilities. Furthermore, both the paint spray booth coating operations at the Big Valley Ford facility have health risks that are below the SJVAPCD thresholds. Therefore, the future residential sensitive receptors would be sited at an appropriate distance from potential TAC sources and risks from potential exposure to air toxics would be negligible.

Sincerely,

Rincon Consultants, Inc.

Kari Zajac, MESM
Project Manager

Matt Maddox, AICP
Principal
Attachment 1

Health Risk Assessment Screening Information
San Joaquin Valley Air Pollution Control District
Authority to Construct Application Review

Motor Vehicle Gasoline Dispensing Facility Phase II EVR Upgrade

Facility Name: California Car Wash
Mailing Address: 3434 East Hammer Lane
Stockton, CA 95207
Contact Person: Joseph Bagley (Contractor)
Telephone: (209) 367-4800
Fax: (209) 367-5424
Application #: N-161-1-3
Project #: N1091460
Deemed Complete: April 3, 2009

Date: April 3, 2009
Engineer: Wai-Man So
Lead Engineer: Nick Peirce

I. Proposal
California Car Wash is requesting an Authority to Construct (ATC) permit to upgrade the existing Phase II Vapor Recovery System from Balance (G-70-52-AM) to VST EVR with Veeder-Root Vapor Filter not including ISD (VR-203) in this retail facility.

II. Applicable Rules
District Rule 1081 Source Sampling (12/16/93)
District Rule 2201 New and Modified Stationary Source Review Rule (09/21/06)
District Rule 2520 Federally Mandated Operating Permits (06/21/01)
District Rule 4102 Nuisance (12/17/92)
District Rule 4621 Gasoline Transfer into Stationary Storage Containers, Delivery Vessels and Bulk Plants (12/20/07)
District Rule 4622 Transfer of Gasoline into Vehicle Tanks (12/20/07)
CH&SC 42301.6 School Notice
Public Resources Code 21000-21177: California Environmental Quality Act (CEQA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines

III. Project Location
The facility is located at 3434 East Hammer Lane, Stockton in CA. There will not be an increase of emissions as a result of this project. Pursuant to California Health and Safety Code 42301.6, a school notification is not required.
IV. Process Description

Gasoline is delivered to the storage tanks via a delivery vessel. Gasoline is then dispensed from the tanks into motor vehicle tanks during vehicle refueling.

V. Equipment Listing

Pre-Project Equipment Description:

GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY BALANCE PHASE II VAPOR RECOVERY SYSTEM (G-70-52-AM)

Proposed Modification:

MODIFICATION OF GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY BALANCE PHASE II VAPOR RECOVERY SYSTEM (G-70-52-AM): UPGRADE THE EXISTING PHASE II VAPOR RECOVERY SYSTEM FROM BALANCE (G-70-52-AM) TO VST EVR WITH VEEDEER-ROOT VAPOR FILTER NOT INCLUDING ISD (VR-203). THE POST PROJECT EQUIPMENT DESCRIPTION WILL BECOME: GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY A PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY A VST EVR PHASE II VAPOR RECOVERY SYSTEM WITH VEEDEER-ROOT VAPOR FILTER NOT INCLUDING ISD (VR-203)

Post Project Equipment Description:

GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY A PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY A VST EVR PHASE II VAPOR RECOVERY SYSTEM WITH VEEDEER-ROOT VAPOR FILTER NOT INCLUDING ISD (VR-203)
VI. Emission Control Technology Evaluation

A. Control Technique

The motor vehicle refueling operation will use California Air Resources Board (CARB) certified Phase I and Phase II vapor recovery systems designed to reduce VOC emission by at least 98% during storage tank filling & 95% during motor vehicle refueling.

B. BACT

The use of CARB certified Phase I & II vapor recovery systems satisfies SJVUAPCD BACT requirements for motor vehicle refueling facilities.

VII. Calculations

<table>
<thead>
<tr>
<th>Annual Throughput Comparison Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Post Project Fueling Points</td>
</tr>
<tr>
<td>Annual Throughput Proposed by Applicant</td>
</tr>
<tr>
<td>Annual Throughput Calculated by District¹</td>
</tr>
<tr>
<td>Use the Following Post Project Annual Throughput</td>
</tr>
</tbody>
</table>

A. Assumptions

- VOC is the only pollutant emitted from this operation.
- This facility may operate 24 hours per day, 365 days per year.
- Nozzles pump at 10 gal/min. (from ARB Executive Orders).
- Stations are designated to handle peak gasoline dispensing periods, so an estimated use factor of 50% is considered conservative.
- If the time that a vehicle spends at a fueling station is 8 minutes, only about 2 minutes of that time is actually spent dispensing fuel (20 gallons @ 10 gal/min). Therefore, a utilization factor of 0.25 will be used for calculations.
- Since the facility is not required to install ISD until September 1, 2009, no annual throughput limit is necessary at this time before the due date. However, in order to avoid triggering the ISD requirements for Phase II EVR, the facility will be required to accept an annual throughput limit of 1.8 million gallons/year until September 1, 2010, after which the annual throughput limit will be 600,000 gallons/year or less.
- As a conservative estimate, the post-project annual VOC emissions are calculated based on the District-calculated annual throughput of 3,942,000 gallons per year (per District assumption).

B. Emission Factors

Pursuant to California Air Resource Board, OPW Phase I Vapor Recovery System and VST Phase II Vapor Recovery System are certified Phase I & II Vapor Recovery System under Executive Orders (EO) VR-102 and VR-203 respectively. The emission factor were obtain from Appendix A - Emission Factors For Gasoline

¹ This value is calculated using the standard District assumptions listed in this section.
Enclosed are questionnaire forms asking for annual process data for your equipment that have a Permit to Operate (PTO) from the District. The purpose of requesting this information is to update your facility records with the District, help expedite the renewal of your company's permit(s), and to collect data for the District's and State's emission inventories.

The information you supply to the District must represent your operation for the 2019 calendar year. Please note, the included questionnaires are general in nature and not all questions may apply to the permitted unit(s) listed. Answer only those questions that are applicable.

Please return the completed questionnaire by June 1, 2020 using one of these methods:

Address: SJVAPCD
Attn: Emission Inventory
1990 E. Gettysburg Ave.
Fresno, CA 93726

FAX: (559) 230-6061

Email: inventory@valleyair.org

If you have any questions, please contact the Emission Inventory group at (559) 230-6000 or inventory@valleyair.org.
SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT
1990 E. Gettysburg Ave., Fresno, CA 93726
(559) 230 - 6000 FAX: (559) 230 - 6061

SURVEY FOR THE ANNUAL EMISSION INVENTORY : 2019

BIG VALLEY FORD
PO BOX 10398
STOCKTON, CA 95210

FACILITY ID#: N-112
TAD #:
SIC #: 5511
PHONE #: (209) 870-4352

SITE ADDRESS : 3282 AUTO CENTER DR, STOCKTON

Note: All requests for confidentiality must be supported by a written justification (Title 17, section 91010, California Administrative Code)

WorkSheet for Permit #: N-112-1-2

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION WITH A PAINT SPRAY BOOTH WITH DRY EXHAUST FILTERS AND A PERMIT EXEMPT NATURAL GAS-FIRED BOOTH HEATER (LESS THAN 20.0 MMBTU/DAY HEAT INPUT)

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION
Please provide the total number of gallons of each material category (as applied including catalysts reducers, etc) used for the year. Also provide the VOC content (excluding water and exempt compounds) of each material in pounds per gallon, and the total pounds of VOC for each category of material used for the year (Lbs of VOC = Gallons Used x VOC Content).

Annual Process Data for Coating Operations:

<table>
<thead>
<tr>
<th>Material Category</th>
<th>Gallons Used</th>
<th>VOC Content (lb/gal)</th>
<th>Lbs of VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Coating</td>
<td>105.70</td>
<td>.57</td>
<td>120.89</td>
</tr>
<tr>
<td>Color Coating</td>
<td>109.02</td>
<td>.32</td>
<td>69.60</td>
</tr>
<tr>
<td>Single-Stage Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Color Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion Promotor</td>
<td>INC</td>
<td>PRIMER</td>
<td></td>
</tr>
<tr>
<td>Primers</td>
<td>46.09</td>
<td>.46</td>
<td>42.37</td>
</tr>
<tr>
<td>Primer Sealer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Protective Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform Finish Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck Bed Liner Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underbody Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Other Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean up/Wipe-Down Solvent</td>
<td>(Do not include acetone)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If fuel is burned for curing any coating or incinerating vapors, circle fuel type, fill in quantity of
fuel burned, and circle appropriate units:
Fuel Type: (Natural Gas, LPG, Diesel): [] BTU [] SCF, BTU, Therms, Gals

For equipment (i.e. spray booth) with regular operating schedule:
Hours/Day: 35 Days/Week: 50 Weeks/Year: 52

Comments:

__

__
BIG VALLEY FORD
PO BOX 10398
STOCKTON, CA 95210

FACILITY ID#: N-112
TAD #:
SIC #: 5511
PHONE #: (209) 870-4352

SITE ADDRESS: 3282 AUTO CENTER DR, STOCKTON

Note: All requests for confidentiality must be supported by a written justification (Title 17, section 91010, California Administrative Code)

WorkSheet for Permit #: N-112-4-0

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION WITH A PAINT SPRAY BOOTH WITH EXHAUST FILTERS AND AN ELECTRIC HEATER

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION

Please provide the total number of gallons of each material category (as applied including catalysts reducers, etc) used for the year. Also provide the VOC content (excluding water and exempt compounds) of each material in pounds per gallon, and the total pounds of VOC for each category of material used for the year (Lbs of VOC = Gallons Used x VOC Content).

<table>
<thead>
<tr>
<th>Material Category</th>
<th>Gallons Used</th>
<th>VOC Content (lb/gal)</th>
<th>Lbs of VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Coating</td>
<td>105.70</td>
<td>.57</td>
<td>60.20</td>
</tr>
<tr>
<td>Color Coating</td>
<td>109.02</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td>Single-Stage Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Color Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion Promotor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primers</td>
<td>46.09</td>
<td>Primer</td>
<td>42.37</td>
</tr>
<tr>
<td>Primer Sealer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Protective Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform Finish Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck Bed Liner Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underbody Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Other Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean up/Wipe-Down Solvent</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

(Do not include acetone)

If fuel is burned for curing any coating or incinerating vapors, circle fuel type, fill in quantity of
fuel burned, and circle appropriate units:
Fuel Type: (Natural Gas, LPG, Diesel): **BTU** (SCF, BTU, Therm, Gals)
For equipment (i.e. spray booth) with regular operating schedule:
Hours/Day: 3.5 Days/Week: 5 Weeks/Year: 52
Comments:__
BIG VALLEY FORD
PO BOX 10398
STOCKTON, CA 95210

SITE ADDRESS: 3282 AUTO CENTER DR, STOCKTON

FACILITY ID #: N-112
TAD #:
SIC #: 5511
PHONE #: (209) 870-4352

Note: All requests for confidentiality must be supported by a written justification (Title 17, section 91010, California Administrative Code)

WorkSheet for Permit #: N-112-5-0

GASOLINE DISPENSING OPERATION WITH ONE 1,000 GALLON CONVAULT ABOVEGROUND STORAGE TANK SERVED BY OPW PHASE I EVR SYSTEM (VR-401-B), STANDING LOSS CONTROL (VR-302-C), AND 1 FUELING POINT WITH 1 GASOLINE DISPENSING NOZZLE SERVED BY BALANCE PHASE II VAPOR RECOVERY SYSTEM (G-70-116-F)

GASOLINE DISPENSING
Annual Throughput Rates
Gallons of Gasoline Dispensed (not including diesel): 68,480.80

Comments: ________________________________
Facility Wide Relative Monthly Activity

If the facility has same operating schedule year round, then please check the Default Monthly Activity box. Otherwise, provide the percentage and months the facility operates. The total percentage for the year must add up to 100%. (100% /12 = 8.3)

<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT MONTHLY ACTIVITY</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Facility Daily Schedule

Please indicate with circles the normal operating schedule:

Hours per day: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Days per week: Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Responsible Official Information

<table>
<thead>
<tr>
<th>Facility ID</th>
<th>Facility</th>
<th>Questionnaire Answered By, Title</th>
<th>Telephone Number</th>
<th>Responsible Official</th>
<th>Responsible Official Telephone Number</th>
<th>Responsible Official Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-112</td>
<td>BIG VALLEY FORD</td>
<td>Mike Baltzer, Parts Manager</td>
<td>(209) 870-4352</td>
<td>Mike Baltzer</td>
<td>(209) 870-4352</td>
<td>Michael Baltzer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/28/2023</td>
</tr>
</tbody>
</table>
Facility ID: N-3308
TAD: 5541
Facility Name: CHASE CHEVROLET

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Process Number</th>
<th>Process Type</th>
<th>Process Rate</th>
<th>Process Units</th>
<th>Process Material</th>
<th>Dist to Business (ft.)</th>
<th>Dist to Residence (ft.)</th>
<th>Dist to School (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fuel dispensing</td>
<td>4505.00</td>
<td>Gallons</td>
<td>Gasoline</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>N/A</td>
<td>0.00</td>
<td>Gallons</td>
<td>Gasoline</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>N/A</td>
<td>0.00</td>
<td>Gallons</td>
<td>Gasoline</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Contact
Company: CHASE CHEVROLET
Address: PO BOX 8349
City, State, Zip: STOCKTON, CA 95208
Telephone: (209) -475-6640
E-mail: alexr947@aol.com
Location of facility if different from above: 6441 HOLMAN RD

By checking this box, I certify that the information contained in the Emissions Survey is accurate to the best of my knowledge.
To: Fred Cruz – Permit Services
From: Tadeh Issakhanian – Technical Services
Date: April 25, 2016
Facility Name: Big Valley Ford, Inc.
Location: 3282 Auto Center Drive, Stockton
Application #(s): N-112-1-2
Project #: N-1161249

A. RMR SUMMARY

<table>
<thead>
<tr>
<th>Categories</th>
<th>Auto Coating (Unit 1-2)</th>
<th>Project Totals</th>
<th>Facility Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritization Score</td>
<td>39</td>
<td>>1.0</td>
<td>>1.0</td>
</tr>
<tr>
<td>Acute Hazard Index</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Chronic Hazard Index</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum Individual Cancer Risk</td>
<td>1.48E-08</td>
<td>1.48E-08</td>
<td>1.48E-08</td>
</tr>
<tr>
<td>T-BACT Required?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Permit Requirements?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed Permit Requirements

To ensure that human health risks will not exceed District allowable levels and to implement the Airborne Toxic Control Measure (ATCM) for Emissions of Hexavalent Chromium and Cadmium from Motor Vehicle and Mobile Equipment Coatings, the following permit requirements must be included for:

Unit 1-0

1. No coatings, solvents, or additives containing hexavalent chromium or cadmium shall be used.
2. No coatings, solvents, or additives containing lead or nickel shall be used.
3. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.

T-BACT is required for this unit because of emissions of Ethyl Benzene which is a VOC.
B. RMR REPORT

I. Project Description

Technical Services received a request on April 13, 2016, to perform a Risk Management Review for a proposed modification to a paint spray booth. The modification consisted of the installation replacing an existing paint spray booth with a new paint spray booth. The new paint spray booth is an enclosed paint spray booth with dry filters and a 1.2 MMBtu/hr natural gas fired booth heater. The applicant is not proposing to modify the current daily VOC limit of 54.7 lbs for this refinishing operation or the current facility-wide VOC emissions limit not to exceed 19,708 lbs. The applicant has also agreed to limit the daily natural gas input to 20.0 mmbtu/day.

II. Analysis

The MSDS sheets for the coatings used in the operation were reviewed by CAS# for Hazardous Air Pollutants (HAPs). The values were entered into the Autobody Shop coating spreadsheet to calculate the HAPs' emissions and Toxic emissions for this proposed unit were calculated using 2001 Ventura County's Air Pollution Control District’s emission factors for Natural Gas Fired external combustion, and input into the San Joaquin Valley APCD's Hazard Assessment and Reporting Program (SHARP). In accordance with the District’s Risk Management Policy for Permitting New and Modified Sources (APR 1905, May 28, 2015), risks from the proposed unit’s toxic emissions were prioritized using the procedure in the 1990 CAPCOA Facility Prioritization Guidelines. The prioritization score for the facility is greater than 1.0 (see RMR Summary Table). Therefore, a refined health risk assessment was required. The AERMOD model was used, with the parameters outlined below and meteorological data for 2010-2014 from Stockton to determine the dispersion factors (i.e., the predicted concentration or X divided by the normalized source strength or Q) for a receptor grid. These dispersion factors were input into the SHARP Program, which then used the Air Dispersion Modeling and Risk Tool (ADMRT) of the Hot Spots Analysis and Reporting Program Version 2 (HARP 2) to calculate the chronic and acute hazard indices and the carcinogenic risk for the project.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
<th>Unit 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Point</td>
</tr>
<tr>
<td>Stack Height (m)</td>
<td>6.1</td>
</tr>
<tr>
<td>Stack Diameter (m)</td>
<td>0.86</td>
</tr>
<tr>
<td>Stack Exit Velocity (m/s)</td>
<td>1.86</td>
</tr>
<tr>
<td>Stack Exit Temp. (°K)</td>
<td>298</td>
</tr>
<tr>
<td>NG Usage (MMscf/hr)</td>
<td>0.00120</td>
</tr>
</tbody>
</table>
III. Conclusion

The acute and chronic indices are below 1.0 and the cancer risk associated with the project is greater than 1.0 in a million, but less than 20 in a million. In accordance with the District’s Risk Management Policy, the project is approved with Toxic Best Available Control Technology (T-BACT).

To ensure that human health risks will not exceed District allowable levels; the permit requirements listed on page 1 of this report must be included for this proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

IV. Attachments

A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Prioritization score w/ toxic emissions summary
D. Facility Summary
A. RMR SUMMARY

<table>
<thead>
<tr>
<th>Units</th>
<th>Prioritization Score</th>
<th>Acute Hazard Index</th>
<th>Chronic Hazard Index</th>
<th>Maximum Individual Cancer Risk</th>
<th>T-BACT Required?</th>
<th>Special Permit Requirements?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 6-0 (Paint Booth with NG Heater)</td>
<td>7.26</td>
<td>0.01</td>
<td>0.02</td>
<td>2.25E-07</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Project Totals</td>
<td>7.26</td>
<td>0.01</td>
<td>0.02</td>
<td>2.25E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Totals</td>
<td>>1</td>
<td>0.03</td>
<td>0.02</td>
<td>2.40E-07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed Permit Requirements

To ensure that human health risks will not exceed District allowable levels; the following shall be included as requirements for:

To ensure that human health risks will not exceed District allowable levels and to comply with the Airborne Toxic Control Measure (ATCM) for Emissions of Hexavalent Chromium and Cadmium from Motor Vehicle and Mobile Equipment Coatings; the following permit conditions must be included for:

Unit # 6-0

1. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.
2. No coatings, solvents, or additives containing hexavalent chromium or cadmium shall be used. [District Rule 4102]
3. No coatings, solvents, or additives containing lead or nickel shall be used. [District Rule 4102]
B. RMR REPORT

I. Project Description

Technical Services received a request on August 6, 2018, to perform a Risk Management Review for a proposed installation of a new paint spray booth with dry filters. The daily VOC emissions limit for this facility will be limited to 54.7 lb-VOC per day.

II. Analysis

The SDS sheets for the coatings used in the operation were reviewed by CAS# for Toxic Air Contaminants (TACs). The values were entered into the Autobody Shop coating spreadsheet to calculate the TACs’ emissions, and input into the San Joaquin Valley APCD’s Hazard Assessment and Reporting Program (SHARP). In accordance with the District’s Risk Management Policy for Permitting New and Modified Sources (APR 1905, May 28, 2015), risks from the proposed unit’s toxic emissions were prioritized using the procedure in the 1990 CAPCOA Facility Prioritization Guidelines. (The prioritization score for this proposed facility was greater than 1.0 (see RMR Summary Table). Therefore, a refined health risk assessment was required. The AERMOD model was used, with the parameters outlined below and meteorological data for 2013-2017 from Stockton to determine the dispersion factors (i.e., the predicted concentration or X divided by the normalized source strength or Q) for a receptor grid. These dispersion factors were input into the SHARP Program, which then used the Air Dispersion Modeling and Risk Tool (ADMRT) of the Hot Spots Analysis and Reporting Program Version 2 (HARP 2) to calculate the chronic and acute hazard indices and the carcinogenic risk for the project.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
</tr>
<tr>
<td>Stack Height (m)</td>
</tr>
<tr>
<td>Stack Diameter. (m)</td>
</tr>
<tr>
<td>Stack Exit Velocity (m/s)</td>
</tr>
<tr>
<td>Stack Exit Temp. (°K)</td>
</tr>
<tr>
<td>NG Usage (mmcf/hr)</td>
</tr>
</tbody>
</table>

III. Conclusion

The acute and chronic indices are below 1.0 and the cancer risk associated with the project is greater than 1.0 in a million, but less than 20 in a million. In accordance with the District’s Risk Management Policy, the project is approved with Toxic Best Available Control Technology (T-BACT).

To ensure that human health risks will not exceed District allowable levels; the permit requirements listed on page 1 of this report must be included for this proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.
IV. Attachments

A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Prioritization score w/ toxic emissions summary
D. Facility Summary
Hi Tristan-
Please see comments on the traffic study and let me know if you have any questions. I made a note on page 8 for internal discussion. Please remove once we have an answer. My concern is the study approach in crediting trips for a proposed use versus projected land use trips in the current zoning. It’s tricky in a sense that we are only looking for traffic impacts beyond the existing allowed trips yet they are still unmitigated.
Thanks
Dodgie

Dodgie Vidad -

One week is very optimistic. Due to other projects we’re working on, lead times are up to a week. We’ll see what we can do for this one.
Thanks

Tristan Osborn -

For the City of Stockton Updates on COVID-19, please visit:
Twitter @stocktonUpdates
Facebook @CityofStockton
City Website http://www.stocktonca.gov
Dodgie

From: Tristan Osborn <Tristan.Osborn@stocktonca.gov>
Sent: Tuesday, February 16, 2021 8:25 AM
To: Even Marcelo <Even.Marcelo@stocktonca.gov>; Dodgie Vidad <Dodgie.Vidad@stocktonca.gov>
Cc: Michael McDowell <Michael.McDowell@stocktonca.gov>
Subject: FW: [EXT] Auto Center Drive - Traffic Study ETA

Even/Dodgie -

Please see attached traffic study. The consultant has requested a one-week turnaround, but please let me know if you need a couple extra days to review. Please send any comments/edits in whatever format is easiest for you. Thanks!

- Tristan

Tristan J. Osborn
SENIOR PLANNER, ADVANCED PLANNING
Direct: 209.937.8569
tristan.osborn@stocktonca.gov

For the City of Stockton Updates on COVID-19, please visit:
Twitter @stocktonUpdates
Facebook @CityofStockton
City Website http://www.stocktonca.gov

From: Matthew Maddox <mmaddox@rinconconsultants.com>
Sent: Thursday, February 11, 2021 9:56 AM
To: Tristan Osborn <Tristan.Osborn@stocktonca.gov>; Kari Zajac <kzajac@rinconconsultants.com>
Cc: Matt Diaz <Matt.Diaz@stocktonca.gov>; Michael McDowell <Michael.McDowell@stocktonca.gov>
Subject: RE: [EXT] Auto Center Drive - Traffic Study ETA

CAUTION: This email originated from outside the City of Stockton. Do not click any links or open attachments if this is unsolicited email.

Tristan,

Attached is the traffic memorandum GHD prepared. You can send to the engineering team to review when they are ready. If you or the engineering team has questions, let me know and I can share with GHD (Rosanna and Todd).

Also, attached is the HRA for Air Quality that we prepared. Let us know any questions/clarifications or if we can provide anything else.

Matt Maddox, AICP, Principal
Rincon Consultants, Inc.
Environmental Scientists | Planners | Engineers
916-706-1374 x250
916-204-9142 Mobile
rinconconsultants.com
Matthew -

I hope all is well. I know we were hoping to have the traffic study this week; are we still on track for that? I want to give our engineering team a head’s up on when they can expect the review period to start. Thanks!

- Tristan

For the City of Stockton Updates on COVID-19, please visit:
Twitter @stocktonUpdates
Facebook @CityofStockton
City Website http://www.stocktonca.gov
February 8, 2021

To: Rincon Consultants
Project: Stockton Auto Center Circle Mobile Home Project

From: Todd Tregenza, AICP
Rosanna Southern, EIT
Ref/Job No.: 11222590

CC: City of Stockton
File No.: 11222590-MEM001.DOCX

Subject: Traffic Impact Analysis and Supplemental Operational Analysis

1. Introduction

The City of Stockton has tasked GHD, Inc., sub-consultant to Rincon Consultants, with performing a vehicle miles traveled (VMT) impact analysis and operational analysis of the proposed Stockton Auto Center Circle Mobile Home Park development, hereafter referred to as the “Project”, pursuant to SB 743 and local policy. Under SB 743, Level of Service (LOS) is no longer considered as the metric for environmental transportation impacts under the California Environmental Quality Act (CEQA), but rather VMT. This memorandum also includes traffic operational analysis results with LOS as the metric, consistent with City of Stockton Transportation Impact Analysis Guidelines (2003).

The proposed Project, which consists of 316 mobile home dwelling units, is in the northeastern portion of the City on a currently vacant property west of Holman Road at Auto Center Circle. Single-family homes abut the Project site to the south. The Stockton Auto Mall and related auto-oriented/commercial land uses are located to the north of the Project site. Automobile dealerships abut the Project’s eastern boundary and front Holman Road. This Project will require a General Plan amendment and proposes to change the Project site’s land use designation from Low Density Residential to Medium Density Residential. Figure 1.1 presents the study area map and project location.

This technical memorandum has been prepared to conduct the transportation impact analysis for the proposed project, document the technical data and methodologies utilized in the VMT and LOS analyses, and serve as a technical supplement to the environmental document. As part of this study, GHD has reviewed available guidance and documentation from the City of Stockton to identify any draft or advisory VMT baseline estimates and/or threshold recommendations. In coordination with City staff, and absent adopted or guiding threshold values, GHD has presumed a reduction of 15% below regional baseline as the VMT impact threshold consistent with the Governor’s Office of Planning and Research (OPR) Technical Advisory On Evaluating Transportation Impacts in CEQA (December 2018) and CEQA guidelines. Based on coordination with the City of Stockton, the San Joaquin Council of Governments Regional Travel Demand Model (SJCOC RTDM, 2019) was utilized to estimate baseline and project-level VMT per capita.
2. **VMT Regulatory Framework & Methodology**

SB 743 was signed into law in 2013, with the intent to better align California Environmental Quality Act (CEQA) practices with statewide sustainability goals related to efficient land use, greater multi-modal choices, and greenhouse gas reductions. The provisions of SB 743 became effective statewide on July 1, 2020. Under SB 743, automobile delay, traditionally measured as level of service (LOS), is no longer considered an environmental impact under CEQA. Instead, impacts are determined by changes to VMT.

VMT measures the number and length of vehicle trips made on a daily basis. VMT is a useful indicator of overall land use and transportation efficiency, where the most efficient system is one that minimizes VMT by encouraging shorter vehicle trip lengths, more walking and biking, or increased carpooling and transit. Measuring VMT requires estimating or measuring the full length of vehicle trips by purpose, such as commute trips or shopping trips that often cross between cities, counties, or states. For this reason, regional travel demand models, “big data,” and household travel surveys that are less limited by local agency boundaries are the preferred tools to estimate VMT under SB 743.

2.1 **VMT Threshold**

In December 2018, OPR released its *Technical Advisory on Evaluating Transportation Impacts in CEQA* (OPR's Technical Advisory). OPR’s Technical Advisory identifies recommended VMT thresholds for different land use types, and screening criteria. Generally, OPR recommends a reduction of 15% or more in Baseline VMT per capita as the impact threshold for residential-based developments, as stated below. Residential development that would generate vehicle travel that is 15 or more percent below the existing residential VMT per capita, measured against the region or city, may indicate a less-than-significant transportation impact.

“**Recommended threshold for residential projects**: A proposed project exceeding a level of 15 percent below existing VMT per capita may indicate a significant transportation impact. Existing VMT per capita may be measured as regional VMT per capita or as city VMT per capita. Proposed development referencing a threshold based on city VMT per capita (rather than regional VMT per capita) should not cumulatively exceed the number of units specified in the Sustainable Communities Strategy (SCS) for that city, and should be consistent with the SCS.”

The City of Stockton 2018 Adopted General Plan makes reference to SB 743, and the need to measure the traffic impacts of future projects with VMT as a significance metric. However, the City has yet to establish VMT guidance and significance thresholds. The City is currently in the process of establishing VMT guidance and/or policies for implementing SB 743. In coordination with the City of Stockton, and in absence of adopted or guiding VMT threshold values for the City, the VMT analysis utilizes the recommended threshold of 15% below baseline (existing) regional VMT per capita for Project impact determination.

2.2 **OPR Recommended Screening Thresholds**

OPR’s Technical Advisory lists the following screening thresholds for land use projects. These types of development projects are presumed to have a less than significant impact on VMT and therefore, a less than significant adverse impact on transportation. OPR’s Technical Advisory suggests that lead agencies may screen out VMT impacts using project size, maps, transit availability, and provision of affordable housing.
• Projects that are consistent with the Sustainable Communities Strategy (SCS) or General Plan and generate or attract fewer than 110 daily trips (per CEQA).

• Map-based screening for residential and office projects located in low VMT areas, and incorporate similar features (density, mix of uses, transit accessibility).

• Certain projects within ½ mile of either an existing major transit stop1 or an existing stop along a high-quality transit corridor2 (CEQA Guidelines Section 15064.3, subdivision (b)(1)). However, this will not apply if information indicates that the project will still generate high levels of VMT.

• Affordable Housing Development in infill locations.

• Locally-serving retail projects, typically less than 50,000 square feet (does not apply to this Project).

The proposed Project is considered affordable housing, and it is in an infill location. OPR’s Technical Advisory has the following criteria for screening affordable housing:

Presumption of Less Than Significant Impact for Affordable Residential Development

“Adding affordable housing to infill locations generally improves jobs-housing match, in turn shortening commutes and reducing VMT. Further, “… low-wage workers in particular would be more likely to choose a residential location close to their workplace, if one is available.” In areas where existing jobs-housing match is closer to optimal, low income housing nevertheless generates less VMT than market-rate housing. Therefore, a project consisting of a high percentage of affordable housing may be a basis for the lead agency to find a less-than-significant impact on VMT. Evidence supports a presumption of less than significant impact for a 100 percent affordable residential development (or the residential component of a mixed-use development) in infill locations. Lead agencies may develop their own presumption of less than significant impact for residential projects (or residential portions of mixed-use projects) containing a particular amount of affordable housing, based on local circumstances and evidence. Furthermore, a project which includes any affordable residential units may factor the effect of the affordability on VMT into the assessment of VMT generated by those units.”

The proposed Project could be presumed to have a less than significant impact on VMT, under OPR’s Technical Advisory, due to it being 100 percent affordable housing in an infill location. However, the City has not identified these criteria based on local circumstances and evidence. Additionally, the Project is located within a ½ mile of an existing stop along a high-quality transit corridor. San Joaquin Regional Transit District maintains and operates fixed bus Route 43, which has a stop at Hammer Lane and Holman Road, and has 14-15 minute headways in both directions during peak commute hours. Therefore, this Project could be presumed to cause a less than significant transportation impact, under OPR’s Technical Advisory. However,

1 “major transit stop” - A major transit stop is a “site containing an existing rail, a ferry terminal served by bus or rail transit service, or intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during morning and evening peak hour commute”. OPR, 2018.

2 Pub. Resources Code, § 21155 (“For purposes of this section, a high-quality transit corridor means a corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.”).

for thoroughness, a VMT impact analysis has been performed to confirm if the project-specific or location-specific information would generate significant levels of VMT.

2.3 CEQA Baseline Considerations

Under CEQA, project impacts must be evaluated by comparing environmental conditions after project implementation to conditions at a point in time referred to as the baseline. The CEQA Guidelines Section 15125 provides the following guidance for establishing the baseline:

"An EIR must include a description of the physical environmental conditions in the vicinity of the project. This environmental setting will normally constitute the baseline physical conditions by which a lead agency determines whether an impact is significant. [...] The purpose of this requirement is to give the public and decision makers the most accurate and understandable picture practically possible of the project's likely near-term and long-term impacts."

The CEQA Guidelines goes on to state that generally, the baseline is the environmental condition that exists at the time the notice of preparation is published or environmental analysis is commenced, from both a local and regional perspective. However, a lead agency may define the baseline by referencing historic conditions, as long as substantial evidence is provided that such a baseline is necessary to provide the most accurate picture practically possible of the project’s impacts given that existing conditions change or fluctuate over time.

The baseline provided in this memorandum is estimated for the region, from the most recently updated SJCOG Travel Demand Model.

2.4 VMT Methodology

2.4.1 City of Stockton Model

The City of Stockton General Plan Travel Demand Model (Stockton Model, 2017) is a trip-based model that utilizes the traditional four-step travel demand modelling method, a standard modelling process that uses land use inputs to determine trip generations and attractions, trip distribution, mode choice, and trip assignment. This model was considered for estimation of baseline VMT and project-level VMT estimates. However, the model boundary is limited by the City’s planning area (General Plan area) and does not account for the full length of trips with origins and destinations outside of the model boundary.

2.4.2 SJCOG Regional Travel Demand Model

The baseline provided in this memorandum is estimated from the most recently updated SJCOG Regional Travel Demand Model (SJCOG RTDM, VMIP-2, 2019), which has a base year of 2015 and a forecast year of 2045. The SJCOG RTDM utilizes the traditional four-step travel demand modelling method, and covers San Joaquin County, Merced County, and Stanislaus County. This tri-county model processes land use data to produce trips by different trip purposes and modes. It outputs VMT throughout the model boundary and represents interregional travel. The SJCOG Model base year 2015 was utilized to estimate regional baseline Residential VMT, including cities. To estimate trips associated with Residential VMT, all home-based
vehicular trips were selected for a trip-based evaluation of VMT. The model’s socioeconomic inputs were utilized to estimate regional population and calculate VMT per capita.

County External Trips

The SJCOG model inputs and trip purposes for evaluation of VMT is limited to the boundary of the model area. To estimate baseline VMT, the total trip lengths of trips with origins or destinations outside of the model boundary must be accounted for. Each of the model’s external gateways has an assigned link distance, and accurately represents the average distance travelled for trips beyond the model boundary, based on local and interregional commute patterns and census data. By accounting for the assigned link distances, the baseline VMT calculation includes the full trip lengths of internal-external and external-internal trips.

Project-Level VMT

Project-level VMT was estimated using the SJCOG model, based on the average length of residential-based trips from the traffic analysis zone (TAZ) containing the Project site. Then the trip generation, calculated in this memorandum, was multiplied by this average trip length to determine the total Project VMT. The total VMT was divided by the estimated Project population to arrive at the VMT per capita.

3. **Project Description**

The Project proposes to develop a mobile home park at an approximately 18.52-acre site, consisting of three vacant parcels located at the western terminus of Auto Center Circle (private street), and 316 dwelling units per the Site Plan. Figure 3.1 presents the project Site Plan.

3.1 **Project Site Access**

The proposed site will provide one main access point via Auto Center Circle, through a gated access at the eastern border of the Project site, and a secondary access further east than the gated access. Several driveways within the Project site along Auto Center Circle will provide access to parking areas interior to the development. The Site Plan also shows on-street parking along Auto Center Circle.
Phase 1, 51 lots

Phase 2, 95 lots

Phase 3, 170 lots

DEVELOPER
BAY AREA HOME OPTIONS, INC.
SHAWN BOWLES
1730 NINTH STREET
BERKELEY, CA 94710
OFFICE: (510) 756-7349

Project No. 11222590
Report No. MEM001
Date JAN 2021

City of Stockton
Stockton Auto Center Circle Mobile Home Project

Project Site Plan

FIGURE 3.1

DRAFT
3.2 Trip Generation

Project trip generation has been estimated for the total number of dwelling units, 316 per the Site Plan. The daily and peak hour trip generation estimations were achieved by utilizing the Institute of Transportation Engineers (ITE) publication *Trip Generation Manual (10th Ed.)*. Trip rates for the 316 dwelling units used the Land Use Code 240 for Mobile Home Park. In addition to the proposed Project, an estimation of trips generated for the current General Plan land use and zoning designation has been included for comparison. The current General Plan land use and zoning designation for the project site is Low Density Residential, which has a maximum density of 8.7 dwelling units per acre per the City’s Municipal Code. Based on the site size of 18.52 acres, an estimated 161 single-family dwelling units would be allowed within the Low Density Residential designation.

Table 3.1 presents the Project trip generation, the trip generation under General Plan land use and zoning, and the difference between the two. As shown, the Project trip generation is 1,580 daily trips, 82 trips in the AM peak hour, and 145 trips in the PM peak hour. The Project is estimated to generate approximately 60 additional daily trips compared to the General Plan land use.

<table>
<thead>
<tr>
<th>Land Use Category (ITE Code)</th>
<th>Unit</th>
<th>Daily Trip Rate/Unit</th>
<th>AM Peak Hour Trip Rate/Unit</th>
<th>PM Peak Hour Trip Rate/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Family Detached Housing (210)</td>
<td>DU</td>
<td>9.44</td>
<td>0.74</td>
<td>25% 75%</td>
</tr>
<tr>
<td>Mobile Home Park (240)</td>
<td>DU</td>
<td>5.00</td>
<td>0.26</td>
<td>31% 69%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Quantity (Units)</th>
<th>Daily Trips</th>
<th>AM Peak Hour Trips</th>
<th>PM Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Plan Land Use (Low Density Residential)</td>
<td>161</td>
<td>1,520</td>
<td>119 30 89</td>
<td>159 100 59</td>
</tr>
<tr>
<td>Mobile Home Park</td>
<td>316</td>
<td>1,580</td>
<td>82 25 57</td>
<td>145 90 55</td>
</tr>
<tr>
<td>Comparison Between Land Uses</td>
<td>155</td>
<td>60</td>
<td>-37 -5 -32</td>
<td>-14 -10 -4</td>
</tr>
</tbody>
</table>

Notes:
1. 1 ksf = 1,000 square feet DU = dwelling unit
2. Trip rates based on ITE Trip Generation Manual 10th edition average rates

3.3 Trip Distribution & Assignment

The trip distribution and assignment described below are used only for the operational (LOS) analysis. Existing average daily traffic (ADT) volumes presented in the General Plan EIR were used to estimate the portion of trips travelling in each direction to and from the Project site and along the study roadway segments. Figure 3.2 presents the trip distribution for the Project-generated trips.
Upgrade the traffic signal equipment to today's standard and install vehicle pre-emption (Opticom system)

Telstar should pick up some percentage too.
To calculate trip assignment, the trip distribution was applied to the estimated Project trip generation to determine the Project trips that travel in each direction. Table 3.2 presents the project-generated trips assigned to the adjacent roadways, for both Existing and Cumulative scenarios.

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Location</th>
<th>% Distribution</th>
<th>Existing</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holman Road</td>
<td>south of Auto Center Circle*</td>
<td>10%</td>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>Holman Road</td>
<td>north of Auto Center Circle</td>
<td>90%</td>
<td>1,420</td>
<td>55</td>
</tr>
<tr>
<td>Hammer Lane</td>
<td>west of Holman Road</td>
<td>35%</td>
<td>550</td>
<td>20</td>
</tr>
<tr>
<td>Hammer Lane</td>
<td>east of Holman Road</td>
<td>36%</td>
<td>570</td>
<td>25</td>
</tr>
<tr>
<td>Holman Road</td>
<td>north of Hammer Lane*</td>
<td>19%</td>
<td>300</td>
<td>10</td>
</tr>
</tbody>
</table>

*Not a study segment, but shown for reference of distributed trips.

These Project trips were superimposed onto the Existing conditions (2020) traffic volumes to derive the Existing Plus Project traffic volumes. The General Plan’s Cumulative (2040) scenario already assumes the Project site would be used for Low Density Residential dwelling units, so to calculate the Cumulative Plus Project traffic volumes on the adjacent roadway segments, the volumes generated by the previously-assumed General Plan land use had to be subtracted from the Cumulative No Project conditions ADT prior to superimposing the added Project trips. The Project trip values for Cumulative conditions shown in Table 3.2 represent the net change in roadway volume that result from this calculation.

4. VMT Analysis

This section presents the various findings of the VMT analyses conducted, based on the methodologies previously described, to evaluate and estimate baseline VMT.

4.1 Baseline VMT

Regional Baseline VMT, population, and VMT per capita information from the SJCOG model is provided in Table 4.1.

<table>
<thead>
<tr>
<th>SJCOG Model (Regional)</th>
<th>Total VMT</th>
<th>Population</th>
<th>VMT per Capita</th>
<th>15% Below Baseline Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJCOG Model (Regional)</td>
<td>18,784,680</td>
<td>627,371</td>
<td>29.9</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Based on the Regional model, the Baseline VMT per capita is 29.9 (including Cities), and the 15% below regional baseline threshold for determining Project impact significance is 25.5 VMT per capita.

4.2 Project VMT

Project total VMT is determined by multiplying the Project’s trip generation by the average trip length of the model TAZ where the Project is located. The Project population was estimated based on the General Plan rate for average persons per household in the City of Stockton (3.23 persons per household). The total VMT divided by the estimated Project population yields the Project’s estimated VMT per capita, which is
compared to the regional threshold to determine impact significance. Table 4.2 presents the Project’s VMT evaluation and estimated VMT per capita compared to the regional threshold.

Table 4.2 Project-Level VMT

<table>
<thead>
<tr>
<th>Project Trips</th>
<th>Average Trip Length (mi)</th>
<th>Project Total VMT</th>
<th>Population</th>
<th>Project VMT per Capita</th>
<th>SJCOG Model Regional Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,580</td>
<td>14.3</td>
<td>22,594</td>
<td>1,021</td>
<td>22.1</td>
<td>25.5</td>
</tr>
</tbody>
</table>

As shown, the Project VMT per capita of 22.1 is lower than the estimated Regional threshold, and is presumed to cause a less than significant transportation impact.

5. LOS Analysis Parameters & Methodologies

5.1 Level of Service (LOS) Methodologies

Traffic operations were quantified through the determination of “Level of Service” (LOS). Level of Service is a qualitative measure of traffic operating conditions, whereby a letter grade “A” through "F" is assigned to an intersection, or roadway segment, representing progressively worsening traffic conditions. LOS “A” represents free-flow operating conditions and LOS "F" represents over-capacity conditions. Levels of Service was calculated for all study locations using the methods documented in the Transportation Research Board Publication Highway Capacity Manual, Sixth Edition, A Guide for Multimodal Mobility Analysis, 2016 (HCM 6).

Table 5.1 presents the LOS traffic volume thresholds in terms of bi-directional average daily traffic (ADT). These thresholds are found in the Envision Stockton 2040 General Plan Update and Utility Master Plan Supplements Final EIR and Mitigation Monitoring and Reporting Program.
Table 5.1 Level of Service (LOS) Criteria for Roadways

<table>
<thead>
<tr>
<th>Facility Class & Lanes</th>
<th>Two-way Average Daily Traffic (ADT) Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS A</td>
</tr>
<tr>
<td>6-Lane Freeway</td>
<td>< 41,400</td>
</tr>
<tr>
<td>4-Lane Freeway</td>
<td>< 27,600</td>
</tr>
<tr>
<td>8-Lane Arterial</td>
<td>< 38,100</td>
</tr>
<tr>
<td>6-Lane Arterial</td>
<td>< 28,800</td>
</tr>
<tr>
<td>4-Lane Arterial</td>
<td>< 18,600</td>
</tr>
<tr>
<td>2-Lane Arterial</td>
<td>< 8,400</td>
</tr>
<tr>
<td>4-Lane Collector</td>
<td>< 17,600</td>
</tr>
<tr>
<td>2-Lane Collector</td>
<td>< 6,400</td>
</tr>
</tbody>
</table>

Notes:
1. LOS F is characterized by ADT greater than the threshold listed under ‘LOS E’.
3. All volumes are approximate and assume ideal roadway characteristics. Actual threshold volumes for each Level of Service listed above may vary depending on a variety of factors including (but not limited to) roadway curvature and grade, intersection or interchange spacing, driveway spacing, percentage of trucks and other heavy vehicles, travel lane widths, signal timing characteristics, on-street parking, volume of cross traffic and pedestrians, etc.

5.1.1 Level of Service Policies

City of Stockton

The Envision Stockton 2040 General Plan contains the following Level of Service policy:

Action TR-4.1A

Strive for Level of Service (LOS) D or better for both daily roadway segment and peak hour intersection operations, except when doing so would conflict with other land use, environmental, or economic development priorities…

This policy also includes a list of locations where there are exceptions to the typical LOS threshold of LOS D:

Strive for different LOS standards along the following corridors due to physical constraints that limit the improvements that can be constructed:

- Hammer Lane, West Lane to Holman Road – LOS E

6. Operational (LOS) Analysis

6.1 Existing Conditions

The Existing conditions describe the existing transportation facilities serving the project site and establish the traffic conditions which currently exist for those facilities. Existing conditions is the analysis scenario in which

Include LOS intersections: 1) Telstar/Holman, 2) Auto Center Cir/Holman, 3) Hammer/Holman, 4) Simpson/Hammer.
current operations at study locations are analyzed and establishes the baseline traffic operations for the proposed project impact analysis.

6.1.1 Existing Roadway LOS

Existing weekday daily traffic volumes were derived for 2020 using straight line growth between volumes presented for years 2016 and 2040 in the Envision Stockton 2040 General Plan Final Environmental Impact Report (FEIR, 2018). Table 6.1 presents a summary of the LOS at each study location during the Existing (2020) conditions, with LOS also calculated for the 2016 volumes for comparison.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2016 ADT</th>
<th>LOS</th>
<th>2020 ADT Estimate</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>8-Lane Arterial</td>
<td>E</td>
<td>38,240</td>
<td>B</td>
<td>38,851</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>8-Lane Arterial</td>
<td>D</td>
<td>36,690</td>
<td>A</td>
<td>37,277</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>16,570</td>
<td>A</td>
<td>16,836</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.1, all three study roadway locations operate at acceptable LOS under Existing (2020) conditions.

6.1.2 Existing Plus Project Roadway LOS

Existing Plus Project conditions refers to the analysis scenario in which projected trips generated by the proposed project are superimposed onto the existing “background” traffic volumes. Traffic impacts associated with the proposed development are investigated in comparison to the Existing Conditions.

Table 6.2 presents a summary of the LOS at each study location during the Existing Plus Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2020 Plus Project ADT Estimate</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>8-Lane Arterial</td>
<td>E</td>
<td>39,401</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>8-Lane Arterial</td>
<td>D</td>
<td>37,847</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>18,256</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.2, all study roadway locations operate at acceptable LOS under Existing Plus Project conditions.

Add tables to show intersections LOS for all scenarios. Include appendix for Synchro calculations.
6.2 Cumulative Conditions

Cumulative conditions refer to the analysis scenario which reflects future conditions represented by local and regional growth in approximately 20 years.

In coordination with the City, the Cumulative conditions scenario is based on the proposed General Plan network, which includes the following roadway improvements:

- Hammer Lane reduced in travel width to 6 lanes
- Holman Road reduced in travel width to 4 lanes

6.2.1 Cumulative Roadway LOS

Table 6.3 presents a summary of the LOS at each study location during the Cumulative No Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2040 ADT General Plan</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>6-Lane Arterial</td>
<td>E</td>
<td>29,200</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>32,500</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>4-Lane Arterial</td>
<td>D</td>
<td>18,150</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.3, all study roadway locations operate at acceptable LOS under Cumulative No Project conditions.

6.2.2 Cumulative Plus Project Roadway LOS

Cumulative Plus Project conditions refers to the analysis scenario in which projected trips generated by the proposed project are superimposed on 2040 No Project traffic volumes and analyzed using the lane geometrics as listed under Cumulative No Project conditions. Table 6.4 presents a summary of the LOS at each study location during the Cumulative Plus Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2040 Plus Project ADT</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>6-Lane Arterial</td>
<td>E</td>
<td>29,220</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>32,525</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>4-Lane Arterial</td>
<td>D</td>
<td>18,155</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.4, all study roadway locations operate at acceptable LOS under Cumulative Plus Project conditions.
7. Conclusion

Based on the VMT analysis contained herein, the proposed Mobile Home Park at Auto Center Circle in Stockton is estimated to have a VMT per capita of 22.1, which is lower than the estimated Regional threshold of 25.5 VMT per capita. Additionally, the Project is an affordable housing project located in an infill location, and is also located within ½ mile of a stop along a high-quality transit corridor. The Project is presumed to cause a less than significant transportation impact.

Based on the operational analysis contained herein, the study locations are anticipated to maintain acceptable level of service with or without the addition of Project traffic under the following scenarios:

- **Existing conditions**
 - Hammer Lane – LOS A/B
 - Holman Road – LOS A

- **Existing Plus Project conditions**
 - Hammer Lane – A/B
 - Holman Road – LOS A

- **Cumulative No Project conditions**
 - Hammer Lane – C/B
 - Holman Road – LOS A

- **Cumulative Plus Project conditions**
 - Hammer Lane – C/B
 - Holman Road – LOS A
I started a blue beam session. It expire on 3/17/2021

Thanks,

Parviz Chitsazan
Senior Civil Engineer
City of Stockton
Public Works Department
22 E. Weber Ave, 3rd Floor
Stockton CA 95202
(209)-937-8243
Fax (209)-937-8277
parviz.chitsazan@stocktonca.gov

Checking in on this if you have comments.
thanks

Please see attached...I already responded that one week is very optimistic.
Thanks

From: Tristan Osborn <Tristan.Osborn@stocktonca.gov>
Sent: Tuesday, February 16, 2021 8:25 AM
To: Even Marcelo <Even.Marcelo@stocktonca.gov>; Dodgie Vidad <Dodgie.Vidad@stocktonca.gov>
Cc: Michael McDowell <Michael.McDowell@stocktonca.gov>
Subject: FW: [EXT] Auto Center Drive - Traffic Study ETA

Even/Dodgie -

Please see attached traffic study. The consultant has requested a one-week turnaround, but please let me know if you need a couple extra days to review. Please send any comments/edits in whatever format is easiest for you. Thanks!

- Tristan

Tristan J. Osborn
SENIOR PLANNER, ADVANCED PLANNING
Direct: 209.937.8569
tristan.osborn@stocktonca.gov

For the City of Stockton Updates on COVID-19, please visit:
Twitter @stocktonUpdates
Facebook @CityofStockton
City Website http://www.stocktonca.gov

From: Matthew Maddox <mmaddox@rinconconsultants.com>
Sent: Thursday, February 11, 2021 9:56 AM
To: Tristan Osborn <Tristan.Osborn@stocktonca.gov>; Kari Zajac <kzajac@rinconconsultants.com>
Cc: Matt Diaz <Matt.Diaz@stocktonca.gov>; Michael McDowell <Michael.McDowell@stocktonca.gov>
Subject: RE: [EXT] Auto Center Drive - Traffic Study ETA

CAUTION: This email originated from outside the City of Stockton. Do not click any links or open attachments if this is unsolicited email.

Tristan,

Attached is the traffic memorandum GHD prepared. You can send to the engineering team to review when they are ready. If you or the engineering team has questions, let me know and I can share with GHD (Rosanna and Todd).

Also, attached is the HRA for Air Quality that we prepared. Let us know any questions/clarifications or if we can provide anything else.

Matt Maddox, AICP, Principal
Rincon Consultants, Inc.
Environmental Scientists | Planners | Engineers
916-706-1374 x250
916-204-9142 Mobile
rinconconsultants.com

From: Tristan Osborn <Tristan.Osborn@stocktonca.gov>
Sent: Thursday, February 11, 2021 9:38 AM
To: Matthew Maddox <mmaddox@rinconconsultants.com>; Kari Zajac <kzajac@rinconconsultants.com>
Matthew -

I hope all is well. I know we were hoping to have the traffic study this week; are we still on track for that? I want to give our engineering team a head’s up on when they can expect the review period to start. Thanks!

- Tristan

For the City of Stockton Updates on COVID-19, please visit:
Twitter @stocktonUpdates
Facebook @CityofStockton
City Website http://www.stocktonca.gov
February 8, 2021

To: Rincon Consultants

From: Todd Tregenza, AICP
Rosanna Southern, EIT

Subject: Traffic Impact Analysis and Supplemental Operational Analysis

1. Introduction

The City of Stockton has tasked GHD, Inc., sub-consultant to Rincon Consultants, with performing a vehicle miles traveled (VMT) impact analysis and operational analysis of the proposed Stockton Auto Center Circle Mobile Home Park development, hereafter referred to as the “Project”, pursuant to SB 743 and local policy. Under SB 743, Level of Service (LOS) is no longer considered as the metric for environmental transportation impacts under the California Environmental Quality Act (CEQA), but rather VMT. This memorandum also includes traffic operational analysis results with LOS as the metric, consistent with City of Stockton Transportation Impact Analysis Guidelines (2003).

The proposed Project, which consists of 316 mobile home dwelling units, is in the northeastern portion of the City on a currently vacant property west of Holman Road at Auto Center Circle. Single-family homes abut the Project site to the south. The Stockton Auto Mall and related auto-oriented/commercial land uses are located to the north of the Project site. Automobile dealerships abut the Project’s eastern boundary and front Holman Road. This Project will require a General Plan amendment and proposes to change the Project site’s land use designation from Low Density Residential to Medium Density Residential. Figure 1.1 presents the study area map and project location.

This technical memorandum has been prepared to conduct the transportation impact analysis for the proposed project, document the technical data and methodologies utilized in the VMT and LOS analyses, and serve as a technical supplement to the environmental document. As part of this study, GHD has reviewed available guidance and documentation from the City of Stockton to identify any draft or advisory VMT baseline estimates and/or threshold recommendations. In coordination with City staff, and absent adopted or guiding threshold values, GHD has presumed a reduction of 15% below regional baseline as the VMT impact threshold consistent with the Governor’s Office of Planning and Research (OPR) Technical Advisory On Evaluating Transportation Impacts in CEQA (December 2018) and CEQA guidelines. Based on coordination with the City of Stockton, the San Joaquin Council of Governments Regional Travel Demand Model (SJCOC RTDM, 2019) was utilized to estimate baseline and project-level VMT per capita.
FIGURE 1.1

Rincon Consultants
Stockton Auto Center Drive Mobile Home Traffic Impact Study

Project Location

City of Stockton

Legend
- City Limits
- Project Location
- Major Streets
 - Highways
 - Major Roads

Data Source: Created By: eangold
Map Projection: Mercator Auxiliary Sphere
Horizontal Datum: WGS 1984
Grid: Paper Size ANSI A

0 1000 2000 ft

N

Project No. 11222590
Revision No. -
Date. 01/19/2021

1500 ft

1000 ft

500 ft

0 ft

City Limits
Project Location
Major Streets
Highways
Major Roads

DRAFT
2. **VMT Regulatory Framework & Methodology**

SB 743 was signed into law in 2013, with the intent to better align California Environmental Quality Act (CEQA) practices with statewide sustainability goals related to efficient land use, greater multi-modal choices, and greenhouse gas reductions. The provisions of SB 743 became effective statewide on July 1, 2020. Under SB 743, automobile delay, traditionally measured as level of service (LOS), is no longer considered an environmental impact under CEQA. Instead, impacts are determined by changes to VMT.

VMT measures the number and length of vehicle trips made on a daily basis. VMT is a useful indicator of overall land use and transportation efficiency, where the most efficient system is one that minimizes VMT by encouraging shorter vehicle trip lengths, more walking and biking, or increased carpooling and transit. Measuring VMT requires estimating or measuring the full length of vehicle trips by purpose, such as commute trips or shopping trips that often cross between cities, counties, or states. For this reason, regional travel demand models, “big data,” and household travel surveys that are less limited by local agency boundaries are the preferred tools to estimate VMT under SB 743.

2.1 **VMT Threshold**

In December 2018, OPR released its *Technical Advisory on Evaluating Transportation Impacts in CEQA* (OPR’s Technical Advisory). OPR’s Technical Advisory identifies recommended VMT thresholds for different land use types, and screening criteria. Generally, OPR recommends a reduction of 15% or more in Baseline VMT per capita as the impact threshold for residential-based developments, as stated below. Residential development that would generate vehicle travel that is 15 or more percent below the existing residential VMT per capita, measured against the region or city, may indicate a less-than-significant transportation impact.

“The **Recommended threshold for residential projects**: A proposed project exceeding a level of 15 percent below existing VMT per capita may indicate a significant transportation impact. Existing VMT per capita may be measured as regional VMT per capita or as city VMT per capita. Proposed development referencing a threshold based on city VMT per capita (rather than regional VMT per capita) should not cumulatively exceed the number of units specified in the Sustainable Communities Strategy (SCS) for that city, and should be consistent with the SCS.”

The City of Stockton 2018 Adopted General Plan makes reference to SB 743, and the need to measure the traffic impacts of future projects with VMT as a significance metric. However, the City has yet to establish VMT guidance and significance thresholds. The City is currently in the process of establishing VMT guidance and/or policies for implementing SB 743. In coordination with the City of Stockton, and in absence of adopted or guiding VMT threshold values for the City, the VMT analysis utilizes the recommended threshold of 15% below baseline (existing) regional VMT per capita for Project impact determination.

2.2 **OPR Recommended Screening Thresholds**

OPR’s Technical Advisory lists the following screening thresholds for land use projects. These types of development projects are presumed to have a less than significant impact on VMT and therefore, a less than significant adverse impact on transportation. OPR’s Technical Advisory suggests that lead agencies may screen out VMT impacts using project size, maps, transit availability, and provision of affordable housing.
Projects that are consistent with the Sustainable Communities Strategy (SCS) or General Plan and generate or attract fewer than 110 daily trips (per CEQA).

Map-based screening for residential and office projects located in low VMT areas, and incorporate similar features (density, mix of uses, transit accessibility).

Certain projects within ½ mile of either an existing major transit stop\(^1\) or an existing stop along a high-quality transit corridor\(^2\) (CEQA Guidelines Section 15064.3, subdivision (b)(1)). However, this will not apply if information indicates that the project will still generate high levels of VMT.

Affordable Housing Development in infill locations.

Locally-serving retail projects, typically less than 50,000 square feet (does not apply to this Project).

The proposed Project is considered affordable housing, and it is in an infill location. OPR’s Technical Advisory has the following criteria for screening affordable housing:

Presumption of Less Than Significant Impact for Affordable Residential Development

“Adding affordable housing to infill locations generally improves jobs-housing match, in turn shortening commutes and reducing VMT. Further, “… low-wage workers in particular would be more likely to choose a residential location close to their workplace, if one is available.”\(^3\) In areas where existing jobs-housing match is closer to optimal, low income housing nevertheless generates less VMT than market-rate housing. Therefore, a project consisting of a high percentage of affordable housing may be a basis for the lead agency to find a less-than-significant impact on VMT. Evidence supports a presumption of less than significant impact for a 100 percent affordable residential development (or the residential component of a mixed-use development) in infill locations. Lead agencies may develop their own presumption of less than significant impact for residential projects (or residential portions of mixed-use projects) containing a particular amount of affordable housing, based on local circumstances and evidence. Furthermore, a project which includes any affordable residential units may factor the effect of the affordability on VMT into the assessment of VMT generated by those units.”

The proposed Project could be presumed to have a less than significant impact on VMT, under OPR’s Technical Advisory, due to it being 100 percent affordable housing in an infill location. However, the City has not identified these criteria based on local circumstances and evidence. Additionally, the Project is located within a ½ mile of an existing stop along a high-quality transit corridor. San Joaquin Regional Transit District maintains and operates fixed bus Route 43, which has a stop at Hammer Lane and Holman Road, and has 14-15 minute headways in both directions during peak commute hours. Therefore, this Project could be presumed to cause a less than significant transportation impact, under OPR’s Technical Advisory. However,

\(^1\) “major transit stop” - A major transit stop is a “site containing an existing rail, a ferry terminal served by bus or rail transit service, or intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during morning and evening peak hour commute”. OPR, 2018.

\(^2\) Pub. Resources Code, § 21155 (“For purposes of this section, a high-quality transit corridor means a corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.”).

\(^3\) Karner and Benner (2015) Low-wage jobs-housing fit: identifying locations of affordable housing shortages.
for thoroughness, a VMT impact analysis has been performed to confirm if the project-specific or location-specific information would generate significant levels of VMT.

2.3 CEQA Baseline Considerations

Under CEQA, project impacts must be evaluated by comparing environmental conditions after project implementation to conditions at a point in time referred to as the baseline. The CEQA Guidelines Section 15125 provides the following guidance for establishing the baseline:

“An EIR must include a description of the physical environmental conditions in the vicinity of the project. This environmental setting will normally constitute the baseline physical conditions by which a lead agency determines whether an impact is significant. […] The purpose of this requirement is to give the public and decision makers the most accurate and understandable picture practically possible of the project's likely near-term and long-term impacts.”

The CEQA Guidelines goes on to state that generally, the baseline is the environmental condition that exists at the time the notice of preparation is published or environmental analysis is commenced, from both a local and regional perspective. However, a lead agency may define the baseline by referencing historic conditions, as long as substantial evidence is provided that such a baseline is necessary to provide the most accurate picture practically possible of the project’s impacts given that existing conditions change or fluctuate over time.

The baseline provided in this memorandum is estimated for the region, from the most recently updated SJCOG Travel Demand Model.

2.4 VMT Methodology

2.4.1 City of Stockton Model

The City of Stockton General Plan Travel Demand Model (Stockton Model, 2017) is a trip-based model that utilizes the traditional four-step travel demand modelling method, a standard modelling process that uses land use inputs to determine trip generations and attractions, trip distribution, mode choice, and trip assignment. This model was considered for estimation of baseline VMT and project-level VMT estimates. However, the model boundary is limited by the City’s planning area (General Plan area) and does not account for the full length of trips with origins and destinations outside of the model boundary.

2.4.2 SJCOG Regional Travel Demand Model

The baseline provided in this memorandum is estimated from the most recently updated SJCOG Regional Travel Demand Model (SJCOG RTDM, VMIP-2, 2019), which has a base year of 2015 and a forecast year of 2045. The SJCOG RTDM utilizes the traditional four-step travel demand modelling method, and covers San Joaquin County, Merced County, and Stanislaus County. This tri-county model processes land use data to produce trips by different trip purposes and modes. It outputs VMT throughout the model boundary and represents interregional travel. The SJCOG Model base year 2015 was utilized to estimate regional baseline Residential VMT, including cities. To estimate trips associated with Residential VMT, all home-based
vehicular trips were selected for a trip-based evaluation of VMT. The model’s socioeconomic inputs were utilized to estimate regional population and calculate VMT per capita.

County External Trips

The SJCOG model inputs and trip purposes for evaluation of VMT is limited to the boundary of the model area. To estimate baseline VMT, the total trip lengths of trips with origins or destinations outside of the model boundary must be accounted for. Each of the model’s external gateways has an assigned link distance, and accurately represents the average distance travelled for trips beyond the model boundary, based on local and interregional commute patterns and census data. By accounting for the assigned link distances, the baseline VMT calculation includes the full trip lengths of internal-external and external-internal trips.

Project-Level VMT

Project-level VMT was estimated using the SJCOG model, based on the average length of residential-based trips from the traffic analysis zone (TAZ) containing the Project site. Then the trip generation, calculated in this memorandum, was multiplied by this average trip length to determine the total Project VMT. The total VMT was divided by the estimated Project population to arrive at the VMT per capita.

3. Project Description

The Project proposes to develop a mobile home park at an approximately 18.52-acre site, consisting of three vacant parcels located at the western terminus of Auto Center Circle (private street), and 316 dwelling units per the Site Plan. Figure 3.1 presents the project Site Plan.

3.1 Project Site Access

The proposed site will provide one main access point via Auto Center Circle, through a gated access at the eastern border of the Project site, and a secondary access further east than the gated access. Several driveways within the Project site along Auto Center Circle will provide access to parking areas interior to the development. The Site Plan also shows on-street parking along Auto Center Circle.
FIGURE 3.1

Project Site Plan

City of Stockton
Stockton Auto Center Circle Mobile Home Project

Project No. 11222590
Report No. MEM001
Date JAN 2021

Phase 1, 95 lots
Phase 2, 170 lots
Phase 3, 51 lots

DEVELOPER
BAY AREA HOME OPTIONS, INC.
SHAWN BOWLES
1730 NINTH STREET
BERKELEY, CA 94710
OFFICE: (510) 595-9640

GHD

GENERAL NOTE:
PROPOSED USE MOBILE HOME PARK

LEGEND:
WB-40 FIRE TRUCK TURN RADIUS
1/8" OPEN AIR HALLWAY EMERGENCY VEHICLES AND PEDESTRIAN ACCESS
3/4" PEDESTRIAN WALKWAY
10'X10' STORAGE UNIT
CONNECTION POINT TO PRIVATE UTILITY
HOME SITE
PARKING STALLS 10' X 20'
PROPERTY LINE
CURB AND GUTTER

2810 AUTO CENTER CIR.
PARCEL ID 128-030-03
CONCEPTUAL PHASE 3

2730 AUTO CENTER CIR.
PARCEL ID 128-030-04
CONCEPTUAL PHASE 2

2871 AUTO CENTER CIR.
PARCEL ID 128-030-01
PHASE 1

Phase 3, 170 lots
Phase 2, 95 lots
Phase 1, 51 lots
3.2 Trip Generation

Project trip generation has been estimated for the total number of dwelling units, 316 per the Site Plan. The daily and peak hour trip generation estimations were achieved by utilizing the Institute of Transportation Engineers (ITE) publication *Trip Generation Manual (10th Ed.)*. Trip rates for the 316 dwelling units used the Land Use Code 240 for Mobile Home Park. In addition to the proposed Project, an estimation of trips generated for the current General Plan land use and zoning designation has been included for comparison. The current General Plan land use and zoning designation for the project site is Low Density Residential, which has a maximum density of 8.7 dwelling units per acre per the City’s Municipal Code. Based on the site size of 18.52 acres, an estimated 161 single-family dwelling units would be allowed within the Low Density Residential designation.

Table 3.1 presents the Project trip generation, the trip generation under General Plan land use and zoning, and the difference between the two. As shown, the Project trip generation is 1,580 daily trips, 82 trips in the AM peak hour, and 145 trips in the PM peak hour. The Project is estimated to generate approximately 60 additional daily trips compared to the General Plan land use.

Table 3.1 Project Trip Generation

<table>
<thead>
<tr>
<th>Land Use Category (ITE Code)</th>
<th>Unit1</th>
<th>Daily Trip Rate/Unit2</th>
<th>AM Peak Hour Trip Rate/Unit</th>
<th>PM Peak Hour Trip Rate/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Family Detached Housing (210)</td>
<td>DU</td>
<td>9.44</td>
<td>0.74</td>
<td>25%</td>
</tr>
<tr>
<td>Mobile Home Park (240)</td>
<td>DU</td>
<td>5.00</td>
<td>0.26</td>
<td>31%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Quantity (Units)</th>
<th>Daily Trips</th>
<th>AM Peak Hour Trips</th>
<th>PM Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Plan Land Use (Low Density Residential)</td>
<td>161</td>
<td>1,520</td>
<td>119</td>
<td>89</td>
</tr>
<tr>
<td>Mobile Home Park</td>
<td>316</td>
<td>1,580</td>
<td>82</td>
<td>57</td>
</tr>
<tr>
<td>Comparison Between Land Uses</td>
<td>155</td>
<td>60</td>
<td>-37</td>
<td>-32</td>
</tr>
</tbody>
</table>

Notes:
1. 1 ksf = 1,000 square feet
2. DU = dwelling unit
3. Trip rates based on ITE Trip Generation Manual 10th edition average rates

3.3 Trip Distribution & Assignment

The trip distribution and assignment described below are used only for the operational (LOS) analysis. Existing average daily traffic (ADT) volumes presented in the General Plan EIR were used to estimate the portion of trips travelling in each direction to and from the Project site and along the study roadway segments. Figure 3.2 presents the trip distribution for the Project-generated trips.
To calculate trip assignment, the trip distribution was applied to the estimated Project trip generation to determine the Project trips that travel in each direction. Table 3.2 presents the project-generated trips assigned to the adjacent roadways, for both Existing and Cumulative scenarios.

Table 3.2 Project Trip Assignment

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Location</th>
<th>% Distribution</th>
<th>Existing</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holman Road</td>
<td>south of Auto Center Circle*</td>
<td>10%</td>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>Holman Road</td>
<td>north of Auto Center Circle</td>
<td>90%</td>
<td>1,420</td>
<td>55</td>
</tr>
<tr>
<td>Hammer Lane</td>
<td>west of Holman Road</td>
<td>35%</td>
<td>550</td>
<td>20</td>
</tr>
<tr>
<td>Hammer Lane</td>
<td>east of Holman Road</td>
<td>36%</td>
<td>570</td>
<td>25</td>
</tr>
<tr>
<td>Holman Road</td>
<td>north of Hammer Lane*</td>
<td>19%</td>
<td>300</td>
<td>10</td>
</tr>
</tbody>
</table>

*Not a study segment, but shown for reference of distributed trips.

These Project trips were superimposed onto the Existing conditions (2020) traffic volumes to derive the Existing Plus Project traffic volumes. The General Plan’s Cumulative (2040) scenario already assumes the Project site would be used for Low Density Residential dwelling units, so to calculate the Cumulative Plus Project traffic volumes on the adjacent roadway segments, the volumes generated by the previously-assumed General Plan land use had to be subtracted from the Cumulative No Project conditions ADT prior to superimposing the added Project trips. The Project trip values for Cumulative conditions shown in Table 3.2 represent the net change in roadway volume that result from this calculation.

4. VMT Analysis

This section presents the various findings of the VMT analyses conducted, based on the methodologies previously described, to evaluate and estimate baseline VMT.

4.1 Baseline VMT

Regional Baseline VMT, population, and VMT per capita information from the SJCOG model is provided in Table 4.1.

Table 4.1 SJCOG Model Baseline VMT Metrics

<table>
<thead>
<tr>
<th>SJCOG Model (Regional)</th>
<th>Total VMT</th>
<th>Population</th>
<th>VMT per Capita</th>
<th>15% Below Baseline Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJCOG Model (Regional)</td>
<td>18,784,680</td>
<td>627,371</td>
<td>29.9</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Based on the Regional model, the Baseline VMT per capita is 29.9 (including Cities), and the 15% below regional baseline threshold for determining Project impact significance is 25.5 VMT per capita.

4.2 Project VMT

Project total VMT is determined by multiplying the Project’s trip generation by the average trip length of the model TAZ where the Project is located. The Project population was estimated based on the General Plan rate for average persons per household in the City of Stockton (3.23 persons per household). The total VMT divided by the estimated Project population yields the Project’s estimated VMT per capita, which is
compared to the regional threshold to determine impact significance. Table 4.2 presents the Project’s VMT evaluation and estimated VMT per capita compared to the regional threshold.

Table 4.2 Project-Level VMT

<table>
<thead>
<tr>
<th>Project Trips</th>
<th>Average Trip Length (mi)</th>
<th>Project Total VMT</th>
<th>Population</th>
<th>Project VMT per Capita</th>
<th>SJCOG Model Regional Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,580</td>
<td>14.3</td>
<td>22,594</td>
<td>1,021</td>
<td>22.1</td>
<td>25.5</td>
</tr>
</tbody>
</table>

As shown, the Project VMT per capita of 22.1 is lower than the estimated Regional threshold, and is presumed to cause a less than significant transportation impact.

5. LOS Analysis Parameters & Methodologies

5.1 Level of Service (LOS) Methodologies

Traffic operations were quantified through the determination of “Level of Service” (LOS). Level of Service is a qualitative measure of traffic operating conditions, whereby a letter grade “A” through ”F” is assigned to an intersection, or roadway segment, representing progressively worsening traffic conditions. LOS “A” represents free-flow operating conditions and LOS “F” represents over-capacity conditions. Levels of Service was calculated for all study locations using the methods documented in the Transportation Research Board Publication *Highway Capacity Manual, Sixth Edition, A Guide for Multimodal Mobility Analysis, 2016 (HCM 6).*

Table 5.1, presents the LOS traffic volume thresholds in terms of bi-directional average daily traffic (ADT). These thresholds are found in the *Envision Stockton 2040 General Plan Update and Utility Master Plan Supplements Final EIR and Mitigation Monitoring and Reporting Program.*
Table 5.1 Level of Service (LOS) Criteria for Roadways

<table>
<thead>
<tr>
<th>Facility Class & Lanes</th>
<th>Two-way Average Daily Traffic (ADT) Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS A</td>
</tr>
<tr>
<td>6-Lane Freeway</td>
<td>< 41,400</td>
</tr>
<tr>
<td>4-Lane Freeway</td>
<td>< 27,600</td>
</tr>
<tr>
<td>8-Lane Arterial</td>
<td>< 38,100</td>
</tr>
<tr>
<td>6-Lane Arterial</td>
<td>< 28,800</td>
</tr>
<tr>
<td>4-Lane Arterial</td>
<td>< 18,600</td>
</tr>
<tr>
<td>2-Lane Arterial</td>
<td>< 8,400</td>
</tr>
<tr>
<td>4-Lane Collector</td>
<td>< 17,600</td>
</tr>
<tr>
<td>2-Lane Collector</td>
<td>< 6,400</td>
</tr>
</tbody>
</table>

Notes:
1. LOS F is characterized by ADT greater than the threshold listed under ‘LOS E’.
3. All volumes are approximate and assume ideal roadway characteristics. Actual threshold volumes for each Level of Service listed above may vary depending on a variety of factors including (but not limited to) roadway curvature and grade, intersection or interchange spacing, driveway spacing, percentage of trucks and other heavy vehicles, travel lane widths, signal timing characteristics, on-street parking, volume of cross traffic and pedestrians, etc.

5.1.1 Level of Service Policies

City of Stockton

The Envision Stockton 2040 General Plan contains the following Level of Service policy:

Action TR-4.1A

Strive for Level of Service (LOS) D or better for both daily roadway segment and peak hour intersection operations, except when doing so would conflict with other land use, environmental, or economic development priorities…

This policy also includes a list of locations where there are exceptions to the typical LOS threshold of LOS D:

Strive for different LOS standards along the following corridors due to physical constraints that limit the improvements that can be constructed:

- Hammer Lane, West Lane to Holman Road – LOS E

6. Operational (LOS) Analysis

6.1 Existing Conditions

The Existing conditions describe the existing transportation facilities serving the project site and establish the traffic conditions which currently exist for those facilities. Existing conditions is the analysis scenario in which
current operations at study locations are analyzed and establishes the baseline traffic operations for the proposed project impact analysis.

6.1.1 Existing Roadway LOS

Existing weekday daily traffic volumes were derived for 2020 using straight line growth between volumes presented for years 2016 and 2040 in the *Envision Stockton 2040 General Plan Final Environmental Impact Report* (FEIR, 2018). Table 6.1 presents a summary of the LOS at each study location during the Existing (2020) conditions, with LOS also calculated for the 2016 volumes for comparison.

Table 6.1 Existing Conditions Roadway Operations

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2016 ADT</th>
<th>LOS</th>
<th>2020 ADT Estimate</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>8-Lane Arterial</td>
<td>E</td>
<td>38,240</td>
<td>B</td>
<td>38,851</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>8-Lane Arterial</td>
<td>D</td>
<td>36,690</td>
<td>A</td>
<td>37,277</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>16,570</td>
<td>A</td>
<td>16,836</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.1, all three study roadway locations operate at acceptable LOS under Existing (2020) conditions.

6.1.2 Existing Plus Project Roadway LOS

Existing Plus Project conditions refers to the analysis scenario in which projected trips generated by the proposed project are superimposed onto the existing “background” traffic volumes. Traffic impacts associated with the proposed development are investigated in comparison to the Existing Conditions.

Table 6.2 presents a summary of the LOS at each study location during the Existing Plus Project conditions.

Table 6.2 Existing Plus Project Conditions Roadway Operations

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2020 Plus Project ADT Estimate</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>8-Lane Arterial</td>
<td>E</td>
<td>39,401</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>8-Lane Arterial</td>
<td>D</td>
<td>37,847</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>18,256</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.2, all study roadway locations operate at acceptable LOS under Existing Plus Project conditions.
6.2 Cumulative Conditions

Cumulative conditions refer to the analysis scenario which reflects future conditions represented by local and regional growth in approximately 20 years.

In coordination with the City, the Cumulative conditions scenario is based on the proposed General Plan network, which includes the following roadway improvements:

- Hammer Lane reduced in travel width to 6 lanes
- Holman Road reduced in travel width to 4 lanes

6.2.1 Cumulative Roadway LOS

Table 6.3 presents a summary of the LOS at each study location during the Cumulative No Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2040 ADT General Plan</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>6-Lane Arterial</td>
<td>E</td>
<td>29,200</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>32,500</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>4-Lane Arterial</td>
<td>D</td>
<td>18,150</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.3, all study roadway locations operate at acceptable LOS under Cumulative No Project conditions.

6.2.2 Cumulative Plus Project Roadway LOS

Cumulative Plus Project conditions refers to the analysis scenario in which projected trips generated by the proposed project are superimposed on 2040 No Project traffic volumes and analyzed using the lane geometrics as listed under Cumulative No Project conditions. Table 6.4 presents a summary of the LOS at each study location during the Cumulative Plus Project conditions.

<table>
<thead>
<tr>
<th>#</th>
<th>Street</th>
<th>Start</th>
<th>End</th>
<th>Facility Type</th>
<th>Target LOS</th>
<th>2040 Plus Project ADT</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hammer Lane</td>
<td>SPRR</td>
<td>Holman Road</td>
<td>6-Lane Arterial</td>
<td>E</td>
<td>29,220</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hammer Lane</td>
<td>Holman Road</td>
<td>SR 99</td>
<td>6-Lane Arterial</td>
<td>D</td>
<td>32,525</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Holman Road</td>
<td>Auto Center</td>
<td>Auto Center</td>
<td>4-Lane Arterial</td>
<td>D</td>
<td>18,155</td>
<td>A</td>
</tr>
</tbody>
</table>

As presented in Table 6.4, all study roadway locations operate at acceptable LOS under Cumulative Plus Project conditions.
7. Conclusion

Based on the VMT analysis contained herein, the proposed Mobile Home Park at Auto Center Circle in Stockton is estimated to have a VMT per capita of 22.1, which is lower than the estimated Regional threshold of 25.5 VMT per capita. Additionally, the Project is an affordable housing project located in an infill location, and is also located within ½ mile of a stop along a high-quality transit corridor. The Project is presumed to cause a less than significant transportation impact.

Based on the operational analysis contained herein, the study locations are anticipated to maintain acceptable level of service with or without the addition of Project traffic under the following scenarios:

- **Existing conditions**
 - Hammer Lane – LOS A/B
 - Holman Road – LOS A

- **Existing Plus Project conditions**
 - Hammer Lane – A/B
 - Holman Road – LOS A

- **Cumulative No Project conditions**
 - Hammer Lane – C/B
 - Holman Road – LOS A

- **Cumulative Plus Project conditions**
 - Hammer Lane – C/B
 - Holman Road – LOS A
February 11, 2021
Project No. 20-10384
City of Stockton
Planning & Engineering Division
345 North El Dorado Street
Stockton, California 95902
Contact: Matt Diaz, Advanced Planning Manager

Subject: **Toxic Air Contaminant Analysis Memorandum for the Auto Center Drive Mobile Home Project**

Dear Mr. Diaz:

Rincon has prepared this Toxic Air Contaminant (TAC) Analysis Memorandum for the Auto Center Mobile Home Project (project). This memorandum qualitatively analyses operational health risk impacts from existing TACs upon the project.

Project Description

The approximately 18.5-acre project site is located on Auto Center Circle west of Holman Road, in the northeastern portion of Stockton. The site address is 2733, 2811, 2868, 2871, and 2810 Auto Center Circle, in the City of Stockton, California. The project site is currently vacant.

The project would construct a mobile home park, consisting of 316 units on the project site and 373 surface parking spaces. The project requires an Administrative Use Permit (AUP) per Stockton Municipal Code (SMC) Section 16.20.020, Allowable land uses and permit requirements, and a General Plan Amendment to change the project site’s land use designation from Low Density Residential to Medium Density Residential. SMC Section 16.80.210 includes a requirement for mobile home parks to obtain an AUP and provides standards specific to the use. The site would be gated along Auto Center Circle near the proposed site office.

Background

Air Quality

The project area is located in the San Joaquin Valley Air Basin (SJVAB), which occupies the southern half of the Central Valley and comprises eight counties: San Joaquin, Stanislaus, Fresno, Merced, Madera, Kings, Tulare, and portions of Kern County. The SJVAB is approximately 250 miles long and 35 miles in width (on average) and is bordered by the Coast Range Mountains on the west, the Sierra Nevada mountains on the east, and the Tehachapi Mountains to the south. On the valley floor, the SJVAB is
open only to the north, which heavily influences prevailing winds. The San Joaquin Valley Air Pollution Control District (SJVAPCD) is the designated air quality control agency for the SJVAB.

Toxic Air Contaminants

A TAC is an air pollutant that may cause or contribute to an increase in mortality or serious illness or which may pose a present or potential hazard to human health. TACs may result in long-term health effects such as cancer, birth defects, neurological damage, asthma, genetic damage, or short-term acute effects such as eye watering, respiratory irritation, runny nose, throat pain, and headaches. TACs are considered either carcinogenic or non-carcinogenic based on the nature of the health effects associated with exposure. For carcinogenic TACs, potential health impacts are evaluated in terms of overall relative risk expressed as excess cancer cases per one million exposed individuals. Non-carcinogenic TACs differ in that there is generally assumed to be a safe level of exposure below which no negative health impact is believed to occur. These levels are determined on a pollutant-by-pollutant basis.

TACs include both organic and inorganic chemical substances. One of the main sources of TACs in California is diesel engines that emit exhaust containing solid material known as diesel particulate matter (DPM); however, TACs may be emitted from a variety of common sources, including gasoline stations, motor vehicles, dry cleaners, industrial operations, painting operations, and research and teaching facilities.

In 1983, the California Legislature enacted a program to identify the health effects of TACs and to reduce exposure to these contaminants to protect the public health (Assembly Bill [AB] 1807: Health and Safety Code Sections 39650–39674). The Legislature established a two-step process to address the potential health effects from TACs. The first step is the risk assessment (or identification) phase. The second step is the risk management (or control) phase of the process.

The California Air Toxics Program establishes the process for the identification and control of TACs and includes provisions to make the public aware of significant toxic exposures and for reducing risk. Additionally, the Air Toxics "Hot Spots" Information and Assessment Act (AB 2588, 1987, Connelly Bill) was enacted in 1987 and requires stationary sources to report the types and quantities of certain substances routinely released into the air. The goals of the Air Toxics "Hot Spots" Act are to collect emission data, identify facilities having localized impacts, ascertain health risks, notify nearby residents of significant risks, and reduce those significant risks to acceptable levels. The Children's Environmental Health Protection Act, California Senate Bill 25 (Chapter 731, Escutia, Statutes of 1999), focuses on children's exposure to air pollutants. The act requires the California Air Resources Board (CARB) to review its air quality standards from a children's health perspective, evaluate the statewide air quality monitoring network, and develop any additional air toxic control measures needed to protect children's health.

Sensitive Receptors

Some receptors are considered more sensitive than others to air pollutants. The reasons for greater than average sensitivity include pre-existing health problems, proximity to emissions sources, or duration of exposure to air pollutants. Schools, hospitals, and convalescent homes are considered to be relatively sensitive to poor air quality because children, elderly people, and the infirmed are more

susceptible to respiratory distress and other air quality-related health problems than the general public. Residential areas are also considered sensitive to poor air quality because people usually stay home for extended periods of time, with greater associated exposure to ambient air quality. Recreational uses are considered sensitive receptors due to the greater exposure to ambient air quality conditions because vigorous exercise associated with recreation places a high demand on the human respiratory system. The SJVAPCD considers hospitals, schools, parks, playgrounds, daycare centers, nursing homes, convalescent facilities, and residential areas as sensitive receptors. The project would introduce new sensitive receptors to the project site as residents.

Thresholds

The SJVAPCD has specified thresholds from health risk impacts from permitted and non-permitted TAC sources. For carcinogenic (cancer) risk, the threshold is greater than 20 per million. For non-carcinogenic risk (acute and chronic), the threshold is greater than 1. The non-carcinogenic risk threshold is a unitless value. Both thresholds are used for the determination of impacts in this analysis.

Methodology

In the SJVAPCD Guide for Assessing and Mitigating Air Quality Impacts, SJVAPCD has identified two categories for land use projects that have the potential to cause long-term public health risk impacts: Type A and Type B projects. Type A projects are land use projects that place new sources of air toxics within the vicinity of existing receptors. Type B projects are land use projects that place new receptors in the vicinity of existing new sources. For Type A projects, the SJVAPCD has screening tools and modeling guidance to evaluate new sources of TACs. For Type B projects, SJVAPCD recommends using guidance from CARB’s Air Quality and Land Use Handbook: A Community Health Perspective for siting new sensitive receptors within proximity to TAC sources.

Advisory recommendations for common sources of TACs are listed in Table 1-1 of the handbook. CARB recommends specific distance between sources to minimize the health risks from TAC sources upon sensitive receptors. The proposed project is a Type B project because it would site new sensitive receptors (i.e. residents) near existing sources. Residential developments are not considered a source of TACs and the project is not categorized as Type A.

To screen out sources of TACs, all potential TAC sources within 1,000 feet of the project boundaries were identified. An influence area of 1,000 feet was used based on the key health findings from the CARB land use handbook, which suggests that adverse health risks are more likely when a receptor is within 1,000 feet of a TAC source. Furthermore, CARB recommends a buffer distance of 1,000 feet for several sources, including distribution centers, rail yards, and chrome pal ters. A public records request was also submitted to the SJVAPCD to identify and obtain information on permitted stationary sources within 1,000 feet of the project site. The distance between the TAC sources and the project site were then estimated and compared to the applicable CARB distance advisory recommendations.

3 Note that SJVAPCD updated their carcinogenic threshold from 10 in one million to 20 in one million in May 2015. See https://www.valleyair.org/busind/pto/staff-report-5-28-15.pdf
The relevant CARB distance advisory recommendations are listed below:

- **Freeways and High-Traffic Roads:** Avoid siting new sensitive within 500 feet of a freeway, urban roads with 100,000 vehicles per day, or rural roads with 50,000 vehicles per day.

- **Distribution Centers:** Avoid siting new sensitive land uses within 1,000 feet of a distribution center (that accommodates more than 100 trucks per day, more than 40 trucks with operating transport refrigeration units (TRUs) per day, or where TRU unit operations exceed 300 hours per week.
 - Take into account the configuration of existing distribution centers and void locating residences and other sensitive land uses near entry and exit points.

- **Rail Yards:** Avoid siting new sensitive land uses within 1,000 feet of a major service and maintenance rail yard.
 - Within one mile of a rail yard, consider possible siting limitations and mitigation approaches.

- **Gasoline Dispensing Facilities:** Avoid siting new sensitive land uses with 300 feet of a large gas station (defined as facility with a throughput of 3.6 million gallons per year or greater). A 50-foot separation is recommended for typical gas dispensing facilities.

Impact Analysis

An initial review of the project area determined that there are no commercial gasoline dispensing facilities, warehouse/distribution centers, nor railyards within 1,000 feet of the project site. In addition, no sources of TACs were identified in the surrounding residential neighborhoods. However, four potential TAC sources were identified. One roadway (Holman Road) and the three SJVAPCD permitted facilities located within the auto dealerships developments are within 1,000 feet of the project site. See Attachment 1 for the Health Risk Assessment screening information.

Mobile Sources

Mobile sources refer to emissions from motor vehicles, including tailpipe and evaporative emissions, and are classified as either on-road or off-road. On-road sources may be legally operated on roadways and highways. Off-road sources include aircraft, ships, trains, and self-propelled construction equipment. The natural environment can also generate air pollutants, such as when high winds suspend fine dust particles. Pollutants emitted by vehicle exhaust are a public health concern. The U.S. EPA has identified six pollutants of highest priority: DPM, acrolein, acetaldehyde, formaldehyde, benzene, and 1,3-butadiene. CARB has identified DPM as the primary airborne carcinogen in the state. A primary source of DPM is exhaust from diesel vehicle traffic on roadways. Exposure to these pollutants from mobile sources can increase the chances of adverse cancer and non-cancer health effects. Therefore, siting new sensitive receptors at further distances from roadways is recommend to reduce exposure from traffic-related emissions.
Holman Road is approximately 200 feet east of the closest project boundary and has average daily traffic of approximately 16,570 vehicles per day. The existing traffic volume is well below the threshold of 100,000 vehicles per day for urban roads. Therefore, the project would comply with CARB’s siting recommendation for freeways and high-traffic roads. Note that roadways, such as Hammer Lane and State Route 99, are not included in this analysis since both roadways are over 1,000 feet from the project site. Hammer Lane is approximately 1,250 feet north and State Route 99 is approximately 0.75 miles east of the project site.

SJVAPCD Permitted Facilities

A public records request was submitted to SJVAPCD to identify permitted stationary sources within 1,000 feet of the project site. SJVAPCD conducted a site review for air toxics within a quarter of a mile of the project site and identified three permitted facilities. SJVAPCD also provided health risk results and gasoline annual throughput rates (i.e. the amount of gasoline dispensed per year). The three permitted facilities within 1,000 feet of the project site include:

1. **Big Valley Ford (3282 Auto Center Drive)** is an auto center dealership that operates two paint spray booth coating operations and a gasoline dispensing facility, not for commercial use. The facility is approximately 120 feet north of the project boundary. The facility has an annual throughput rate of approximately 68,481 gallons per year. From the coating operations, the total approximate cancer risk is from the coating operations is 0.25 per million, the total approximate acute hazard index is 0.05, and the total approximate chronic hazard index is 0.02.

2. **Chase Chevrolet (6441 Holman Road)** is an auto center dealership that operates a gasoline dispensing facility, not for commercial use. The facility is approximately 230 feet northeast of the project boundary. The annual throughput rate is approximately 4,505 gallons per year.

3. **California Car Wash (3434 East Hammer Lane)** is a car washing facility that operates a gasoline dispensing facility. The facility is approximately 970 feet north of the closest project boundary. The annual throughput rate calculated is approximately 3,942,000 gallons per year.

The gasoline dispensing facilities were compared to CARB’s advisory recommendations, while the health risks from paint spray booth coating operations from the Big Valley Ford were compared to the SJVAPCD TAC thresholds. CARB does not have distance recommendations for paint spray booth coating operations. The California Car Wash would be considered a large gas station since its annual throughput of gasoline is greater than 3.6 million gallons per year. However, the California Car Wash is located approximately 970 feet north of the closest project boundary. There is adequate distance between the facility and the proposed project since CARB recommends a 300 feet distance between a sensitive land use and a large gas station. The gas dispensing sources from the Big Valley Ford and the Chase Chevrolet facilities also comply with CARB’s recommendation for typical gas stations since they are over 50 feet from the project site. In addition, the health risks associated with the two paint spray booth operation at the Big Valley Ford facility are 0.25 per million, 0.05 for acute hazard index, and 0.02 for chronic hazard index. These carcinogenic and non-carcinogenic risk and hazard values are below the SJVAPCD thresholds of 20 per million for carcinogenic risks and 1 for non-carcinogenic hazards. Therefore, the

6 Correspondence with Theresa Haywood, Senior Office Assistant San Joaquin Valley Air Pollution Control District. 26 January 2021.

7 Note that this facility is currently named “Zoom Car Wash” but SJVAPCD confirmed that there has been no transfer of ownership for this facility and that this is only a name change.
project would be sited at an appropriate distance from existing permitted facilities and health risks from the Big Valley Ford would be below the SJVAPCD thresholds.

Conclusion

The project proposes the construction of mobile home residences, which would introduce new sensitive receptors to the project site. A screening analysis was completed to identify all potential TAC sources within 1,000 feet of the project boundaries. CARB’s siting distance recommendations from their land use handbook and the SJVAPCD TAC thresholds were used in this analysis to make impact determinations.

Four potential TAC sources were identified, one mobile source (Holman Road) and three permitted stationary sources. Due to the low traffic volume on Holman Road, the roadway would not be considered a high-traffic roadway and mobile sources were screened out. SJVAPCD provided facility-specific site information that showed that the sources at the three permitted stationary sources are located beyond CARB’s recommended siting distance for gasoline dispensing facilities. Furthermore, both the paint spray booth coating operations at the Big Valley Ford facility have health risks that are below the SJVAPCD thresholds. Therefore, the future residential sensitive receptors would be sited at an appropriate distance from potential TAC sources and risks from potential exposure to air toxics would be negligible.

Sincerely,

Rincon Consultants, Inc.

Kari Zajac, MESM
Project Manager

Matt Maddox, AICP
Principal
Attachment 1

Health Risk Assessment Screening Information
San Joaquin Valley Air Pollution Control District
Authority to Construct Application Review

Motor Vehicle Gasoline Dispensing Facility Phase II EVR Upgrade

Facility Name: California Car Wash
Mailing Address: 3434 East Hammer Lane
Stockton, CA 95207
Contact Person: Joseph Bagley (Contractor)
Telephone: (209) 367-4800
Fax: (209) 367-5424
Application #(s): N-161-1-3
Project #: N1091460
Deemed Complete: April 3, 2009

I. Proposal

California Car Wash is requesting an Authority to Construct (ATC) permit to upgrade the existing Phase II Vapor Recovery System from Balance (G-70-52-AM) to VST EVR with Veeder-Root Vapor Filter not including ISD (VR-203) in this retail facility.

II. Applicable Rules

District Rule 1081 Source Sampling (12/16/93)
District Rule 2201 New and Modified Stationary Source Review Rule (09/21/06)
District Rule 2520 Federally Mandated Operating Permits (06/21/01)
District Rule 4102 Nuisance (12/17/92)
District Rule 4621 Gasoline Transfer into Stationary Storage Containers, Delivery Vessels and Bulk Plants (12/20/07)
District Rule 4622 Transfer of Gasoline into Vehicle Tanks (12/20/07)
CH&SC 42301.6 School Notice
Public Resources Code 21000-21177: California Environmental Quality Act (CEQA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines

III. Project Location

The facility is located at 3434 East Hammer Lane, Stockton in CA. There will not be an increase of emissions as a result of this project. Pursuant to California Health and Safety Code 42301.6, a school notification is not required.
IV. Process Description

Gasoline is delivered to the storage tanks via a delivery vessel. Gasoline is then dispensed from the tanks into motor vehicle tanks during vehicle refueling.

V. Equipment Listing

Pre-Project Equipment Description:

GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY BALANCE PHASE II VAPOR RECOVERY SYSTEM (G-70-52-AM)

Proposed Modification:

MODIFICATION OF GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY BALANCE PHASE II VAPOR RECOVERY SYSTEM (G-70-52-AM): UPGRADE THE EXISTING PHASE II VAPOR RECOVERY SYSTEM FROM BALANCE (G-70-52-AM) TO VST EVR WITH VEEDEER-ROOT VAPOR FILTER NOT INCLUDING ISD (VR-203). THE POST PROJECT EQUIPMENT DESCRIPTION WILL BECOME: GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY A PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY A VST EVR PHASE II VAPOR RECOVERY SYSTEM WITH VEEDEER-ROOT VAPOR FILTER NOT INCLUDING ISD (VR-203)

Post Project Equipment Description:

GASOLINE DISPENSING OPERATION WITH ONE 12,000 GALLON AND ONE 12,000 GALLON SPLIT (6,000 GALLON GASOLINE/6,000 GALLON DIESEL) UNDERGROUND STORAGE TANKS SERVED BY A PHIL-TITE PHASE I VAPOR RECOVERY SYSTEM (VR-101-C), AND 6 FUELING POINTS WITH 6 GASOLINE DISPENSING NOZZLES SERVED BY A VST EVR PHASE II VAPOR RECOVERY SYSTEM WITH VEEDEER-ROOT VAPOR FILTER NOT INCLUDING ISD (VR-203)
VI. Emission Control Technology Evaluation

A. Control Technique

The motor vehicle refueling operation will use California Air Resources Board (CARB) certified Phase I and Phase II vapor recovery systems designed to reduce VOC emission by at least 98% during storage tank filling & 95% during motor vehicle refueling.

B. BACT

The use of CARB certified Phase I & II vapor recovery systems satisfies SJVUAPCD BACT requirements for motor vehicle refueling facilities.

VII. Calculations

<table>
<thead>
<tr>
<th>Annual Throughput Comparison Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Post Project Fueling Points</td>
</tr>
<tr>
<td>Annual Throughput Proposed by Applicant</td>
</tr>
<tr>
<td>Annual Throughput Calculated by District¹</td>
</tr>
<tr>
<td>Use the Following Post Project Annual Throughput</td>
</tr>
</tbody>
</table>

A. Assumptions

- VOC is the only pollutant emitted from this operation.
- This facility may operate 24 hours per day, 365 days per year.
- Nozzles pump at 10 gal/min. (from ARB Executive Orders).
- Stations are designated to handle peak gasoline dispensing periods, so an estimated use factor of 50% is considered conservative.
- If the time that a vehicle spends at a fueling station is 8 minutes, only about 2 minutes of that time is actually spent dispensing fuel (20 gallons @ 10 gal/min). Therefore, a utilization factor of 0.25 will be used for calculations.
- Since the facility is not required to install ISD until September 1, 2009, no annual throughput limit is necessary at this time before the due date. However, in order to avoid triggering the ISD requirements for Phase II EVR, the facility will be required to accept an annual throughput limit of 1.8 million gallons/year until September 1, 2010, after which the annual throughput limit will be 600,000 gallons/year or less.
- As a conservative estimate, the post-project annual VOC emissions are calculated based on the District-calculated annual throughput of 3,942,000 gallons per year (per District assumption).

B. Emission Factors

Pursuant to California Air Resource Board, OPW Phase I Vapor Recovery System and VST Phase II Vapor Recovery System are certified Phase I & II Vapor Recovery System under Executive Orders (EO) VR-102 and VR-203 respectively. The emission factor were obtained from Appendix A - Emission Factors For Gasoline

¹ This value is calculated using the standard District assumptions listed in this section.
Enclosed are questionnaire forms asking for annual process data for your equipment that have a Permit to Operate (PTO) from the District. The purpose of requesting this information is to update your facility records with the District, help expedite the renewal of your company's permit(s), and to collect data for the District's and State's emission inventories.

The information you supply to the District must represent your operation for the 2019 calendar year. Please note, the included questionnaires are general in nature and not all questions may apply to the permitted unit(s) listed. Answer only those questions that are applicable.

Please return the completed questionnaire by June 1, 2020 using one of these methods:

Address: SJVAPCD
Attn: Emission Inventory
1990 E. Gettysburg Ave.
Fresno, CA 93726

FAX: (559) 230-6061

Email: inventory@valleyair.org

If you have any questions, please contact the Emission Inventory group at (559) 230-6000 or inventory@valleyair.org.
SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT
1990 E. Gettysburg Ave., Fresno, CA 93726
(559) 230 - 6000 FAX: (559) 230 - 6061
District BCcode 7
SURVEY FOR THE ANNUAL EMISSION INVENTORY : 2019

BIG VALLEY FORD
PO BOX 10398
STOCKTON, CA 95210

FACILITY ID#: N-112
TAD #:
SIC #: 5511
PHONE #: (209) 870-4352

SITE ADDRESS : 3282 AUTO CENTER DR, STOCKTON

Note: All requests for confidentiality must be supported by a written justification (Title 17, section 91010, California Administrative Code)

WorkSheet for Permit #: N-112-1-2

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION WITH A PAINT SPRAY BOOTH WITH DRY EXHAUST FILTERS AND A PERMIT EXEMPT NATURAL GAS-FIRED BOOTH HEATER (LESS THAN 20.0 MMBTU/DAY HEAT INPUT)

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION
Please provide the total number of gallons of each material category (as applied including catalysts reducers, etc) used for the year. Also provide the VOC content (excluding water and exempt compounds) of each material in pounds per gallon, and the total pounds of VOC for each category of material used for the year (Lbs of VOC = Gallons Used x VOC Content).

<table>
<thead>
<tr>
<th>Material Category</th>
<th>Gallons Used</th>
<th>VOC Content (lb/gal)</th>
<th>Lbs of VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Coating</td>
<td>105.70</td>
<td>.57</td>
<td>60.00</td>
</tr>
<tr>
<td>Color Coating</td>
<td>109.02</td>
<td>.32</td>
<td>69.00</td>
</tr>
<tr>
<td>Single-Stage Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Color Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion Promotor</td>
<td>INCL</td>
<td>PRIMER</td>
<td></td>
</tr>
<tr>
<td>Primers</td>
<td>46.09</td>
<td>.46</td>
<td>42.37</td>
</tr>
<tr>
<td>Primer Sealer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Protective Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform Finish Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck Bed Liner Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underbody Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Other Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean up/Wipe-Down Solvent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Do not include acetone)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If fuel is burned for curing any coating or incinerating vapors, circle fuel type, fill in quantity of
fuel burned, and circle appropriate units:
Fuel Type: (Natural Gas, LPG, Diesel): _BTU__ (SCF, BTU, Therms, Gals)

For equipment (i.e. spray booth) with regular operating schedule:
Hours/Day: _35_ Days/Week: _50_ Weeks/Year: _52_

Comments: __
SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT
1990 E. Gettysburg Ave., Fresno, CA 93726

(559) 230-6000 FAX: (559) 230-6061

SURVEY FOR THE ANNUAL EMISSION INVENTORY: 2019

FACILITY ID#: N-112
TAD #:
SIC #: 5511
PHONE #: (209) 870-4352

BIG VALLEY FORD
PO BOX 10398
STOCKTON, CA 95210

SITE ADDRESS: 3282 AUTO CENTER DR, STOCKTON

Note: All requests for confidentiality must be supported by a written justification (Title 17, section 91010, California Administrative Code)

WorkSheet for Permit #: N-112-4-0

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION WITH A PAINT SPRAY BOOTH WITH EXHAUST FILTERS AND AN ELECTRIC HEATER

MOTOR VEHICLE AND MOBILE EQUIPMENT COATING OPERATION

Please provide the total number of gallons of each material category (as applied including catalysts, reducers, etc) used for the year. Also provide the VOC content (excluding water and exempt compounds) of each material in pounds per gallon, and the total pounds of VOC for each category of material used for the year (Lbs of VOC = Gallons Used x VOC Content).

Annual Process Data for Coating Operations:

<table>
<thead>
<tr>
<th>Material Category</th>
<th>Gallons Used</th>
<th>VOC Content (lb/gal)</th>
<th>Lbs of VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Coating</td>
<td>105.70</td>
<td>0.57</td>
<td>69.60</td>
</tr>
<tr>
<td>Color Coating</td>
<td>109.02</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Single-Stage Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Color Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion Promotor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primers</td>
<td>46.09</td>
<td>0.46</td>
<td>42.37</td>
</tr>
<tr>
<td>Primer Sealer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Protective Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform Finish Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck Bed Liner Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underbody Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Other Coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean up/Wipe-Down Solvent</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>(Do not include acetone)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If fuel is burned for curing any coating or incinerating vapors, circle fuel type, fill in quantity of...
fuel burned, and circle appropriate units:

Fuel Type: (Natural Gas, LPG, Diesel): \(\text{BTU}\) (SCF, BTU, Therms, Gals)

For equipment (i.e. spray booth) with regular operating schedule:

Hours/Day: \(3.5\) Days/Week: \(5\) Weeks/Year: \(52\)

Comments: __
BIG VALLEY FORD
PO BOX 10398
STOCKTON, CA 95210

SITE ADDRESS : 3282 AUTO CENTER DR, STOCKTON

FACILITY ID# : N-112
TAD #:
SIC #: 5511
PHONE #: (209) 870-4352

Is this information considered:
[] CONFIDENTIAL
[] NOT CONFIDENTIAL

Note: All requests for confidentiality must be supported by a written justification (Title 17, section 91010, California Administrative Code)

WorkSheet for Permit # : N-112-5-0

GASOLINE DISPENSING OPERATION WITH ONE 1,000 GALLON CONVAULT ABOVEGROUND STORAGE TANK SERVED BY OPW PHASE I EVR SYSTEM (VR-401-B), STANDING LOSS CONTROL (VR-302-C), AND 1 FUELING POINT WITH 1 GASOLINE DISPENSING NOZZLE SERVED BY BALANCE PHASE II VAPOR RECOVERY SYSTEM (G-70-116-F)

GASOLINE DISPENSING
Annual Throughput Rates
Gallons of Gasoline Dispensed (not including diesel): 68,480.80

Comments: ________________________________
Facility Wide Relative Monthly Activity

If the facility has same operating schedule year round, then please check the Default Monthly Activity box. Otherwise, provide the percentage and months the facility operates. The total percentage for the year must add up to 100%. (100%/12 = 8.3)

<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>8.3</td>
</tr>
<tr>
<td>RELATIVE MONTHLY ACTIVITY</td>
<td></td>
</tr>
</tbody>
</table>

Facility Daily Schedule

Please indicate with circles the normal operating schedule:

Hours per day: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Days per week: Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Responsible Official Information

<table>
<thead>
<tr>
<th>Facility ID</th>
<th>N-112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility</td>
<td>BIG VALLEY FORD</td>
</tr>
<tr>
<td>Questionnaire Answered By, Title</td>
<td>Mike Baltzer, Parts Manager</td>
</tr>
<tr>
<td>Telephone Number</td>
<td>(209) 870-4352</td>
</tr>
<tr>
<td>Responsible Official</td>
<td>Mike Baltzer</td>
</tr>
<tr>
<td>Responsible Official Telephone Number</td>
<td>(209) 870-4352</td>
</tr>
<tr>
<td>Responsible Official Signature</td>
<td>[Signature]</td>
</tr>
<tr>
<td>Date</td>
<td>5/28/2020</td>
</tr>
<tr>
<td>Permit Number</td>
<td>Process Number</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Contact

Alex Robinson
CHASE CHEVROLET
PO BOX 8349
STOCKTON, CA 95208
(209) -475-6640
alexr947@aol.com

Location of facility if different from above
6441 HOLMAN RD
STOCKTON, CA 95212

Name and Title of Responsible Official

Name:
Title:

By checking this box, I certify that the information contained in the Emissions Survey is accurate to the best of my knowledge.
A. RMR SUMMARY

<table>
<thead>
<tr>
<th>Categories</th>
<th>Auto Coating (Unit 1-2)</th>
<th>Project Totals</th>
<th>Facility Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritization Score</td>
<td>39</td>
<td>>1.0</td>
<td>>1.0</td>
</tr>
<tr>
<td>Acute Hazard Index</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Chronic Hazard Index</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum Individual Cancer Risk</td>
<td>1.48E-08</td>
<td>1.48E-08</td>
<td>1.48E-08</td>
</tr>
<tr>
<td>T-BACT Required?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Permit Requirements?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed Permit Requirements

To ensure that human health risks will not exceed District allowable levels and to implement the Airborne Toxic Control Measure (ATCM) for Emissions of Hexavalent Chromium and Cadmium from Motor Vehicle and Mobile Equipment Coatings, the following permit requirements must be included for:

Unit 1-0

1. No coatings, solvents, or additives containing hexavalent chromium or cadmium shall be used.
2. No coatings, solvents, or additives containing lead or nickel shall be used.
3. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.

T-BACT is required for this unit because of emissions of Ethyl Benzene which is a VOC.
B. RMR REPORT

I. Project Description

Technical Services received a request on April 13, 2016, to perform a Risk Management Review for a proposed modification to a paint spray booth. The modification consisted of the installation replacing an existing paint spray booth with a new paint spray booth. The new paint spray booth is an enclosed paint spray booth with dry filters and a 1.2 MMBtu/hr natural gas fired booth heater. The applicant is not proposing to modify the current daily VOC limit of 54.7 lbs for this refinishing operation or the current facility-wide VOC emissions limit not to exceed 19,708 lbs. The applicant has also agreed to limit the daily natural gas input to 20.0 mmbtu/day.

II. Analysis

The MSDS sheets for the coatings used in the operation were reviewed by CAS# for Hazardous Air Pollutants (HAPs). The values were entered into the Autobody Shop coating spreadsheet to calculate the HAPs' emissions and Toxic emissions for this proposed unit were calculated using 2001 Ventura County’s Air Pollution Control District’s emission factors for Natural Gas Fired external combustion, and input into the San Joaquin Valley APCD’s Hazard Assessment and Reporting Program (SHARP). In accordance with the District’s Risk Management Policy for Permitting New and Modified Sources (APR 1905, May 28, 2015), risks from the proposed unit’s toxic emissions were prioritized using the procedure in the 1990 CAPCOA Facility Prioritization Guidelines. The prioritization score for the facility is greater than 1.0 (see RMR Summary Table). Therefore, a refined health risk assessment was required. The AERMOD model was used, with the parameters outlined below and meteorological data for 2010-2014 from Stockton to determine the dispersion factors (i.e., the predicted concentration or X divided by the normalized source strength or Q) for a receptor grid. These dispersion factors were input into the SHARP Program, which then used the Air Dispersion Modeling and Risk Tool (ADMRT) of the Hot Spots Analysis and Reporting Program Version 2 (HARP 2) to calculate the chronic and acute hazard indices and the carcinogenic risk for the project.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
<th>Unit 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Point</td>
</tr>
<tr>
<td>Stack Height (m)</td>
<td>6.1</td>
</tr>
<tr>
<td>Stack Diameter. (m)</td>
<td>0.86</td>
</tr>
<tr>
<td>Stack Exit Velocity (m/s)</td>
<td>1.86</td>
</tr>
<tr>
<td>Stack Exit Temp. (°K)</td>
<td>298</td>
</tr>
<tr>
<td>NG Usage (MMscf/yr)</td>
<td>0.00120</td>
</tr>
</tbody>
</table>
III. Conclusion

The acute and chronic indices are below 1.0 and the cancer risk associated with the project is greater than 1.0 in a million, but less than 20 in a million. In accordance with the District’s Risk Management Policy, the project is approved with Toxic Best Available Control Technology (T-BACT).

To ensure that human health risks will not exceed District allowable levels; the permit requirements listed on page 1 of this report must be included for this proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

IV. Attachments

A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Prioritization score w/ toxic emissions summary
D. Facility Summary
San Joaquin Valley Air Pollution Control District
Risk Management Review

To: Fred Cruz – Permit Services
From: Eddie Arredondo – Technical Services
Date: August 8, 2018
Facility Name: Big Valley Ford
Location: 3282 Auto Center Circle
Application #(s): N-112-6-0
Project #: N-1182484

A. RMR SUMMARY

<table>
<thead>
<tr>
<th>Units</th>
<th>Prioritization Score</th>
<th>Acute Hazard Index</th>
<th>Chronic Hazard Index</th>
<th>Maximum Individual Cancer Risk</th>
<th>T-BACT Required?</th>
<th>Special Permit Requirements?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 6-0 (Paint Booth with NG Heater)</td>
<td>7.26</td>
<td>0.01</td>
<td>0.02</td>
<td>2.25E-07</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Project Totals</td>
<td>7.26</td>
<td>0.01</td>
<td>0.02</td>
<td>2.25E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Totals</td>
<td>>1</td>
<td>0.03</td>
<td>0.02</td>
<td>2.40E-07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed Permit Requirements

To ensure that human health risks will not exceed District allowable levels; the following shall be included as requirements for:

To ensure that human health risks will not exceed District allowable levels and to comply with the Airborne Toxic Control Measure (ATCM) for Emissions of Hexavalent Chromium and Cadmium from Motor Vehicle and Mobile Equipment Coatings; the following permit conditions must be included for:

Unit # 6-0

1. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.
2. {Revised 4442} No coatings, solvents, or additives containing hexavalent chromium or cadmium shall be used. [District Rule 4102]
3. No coatings, solvents, or additives containing lead or nickel shall be used. [District Rule 4102]
B. RMR REPORT

I. Project Description

Technical Services received a request on August 6, 2018, to perform a Risk Management Review for a proposed installation of a new paint spray booth with dry filters. The daily VOC emissions limit for this facility will be limited to 54.7 lb-VOC per day.

II. Analysis

The SDS sheets for the coatings used in the operation were reviewed by CAS# for Toxic Air Contaminants (TACs). The values were entered into the Autobody Shop coating spreadsheet to calculate the TACs’ emissions, and input into the San Joaquin Valley APCD’s Hazard Assessment and Reporting Program (SHARP). In accordance with the District’s Risk Management Policy for Permitting New and Modified Sources (APR 1905, May 28, 2015), risks from the proposed unit’s toxic emissions were prioritized using the procedure in the 1990 CAPCOA Facility Prioritization Guidelines. (The prioritization score for this proposed facility was greater than 1.0 (see RMR Summary Table). Therefore, a refined health risk assessment was required. The AERMOD model was used, with the parameters outlined below and meteorological data for 2013-2017 from Stockton to determine the dispersion factors (i.e., the predicted concentration or X divided by the normalized source strength or Q) for a receptor grid. These dispersion factors were input into the SHARP Program, which then used the Air Dispersion Modeling and Risk Tool (ADMRT) of the Hot Spots Analysis and Reporting Program Version 2 (HARP 2) to calculate the chronic and acute hazard indices and the carcinogenic risk for the project.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
<th>Unit 6-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Point</td>
</tr>
<tr>
<td>Stack Height (m)</td>
<td>8.23</td>
</tr>
<tr>
<td>Stack Diameter (m)</td>
<td>0.86</td>
</tr>
<tr>
<td>Stack Exit Velocity (m/s)</td>
<td>9.66</td>
</tr>
<tr>
<td>Stack Exit Temp. (°K)</td>
<td>344.11</td>
</tr>
<tr>
<td>VOC Emission (lb/day)</td>
<td>54.7</td>
</tr>
<tr>
<td>VOC Emission (lb/year)</td>
<td>19966</td>
</tr>
<tr>
<td>NG Usage (mmscf/hr)</td>
<td>0.0012</td>
</tr>
<tr>
<td>NG Usage (mmscf/yr)</td>
<td>10.512</td>
</tr>
</tbody>
</table>

III. Conclusion

The acute and chronic indices are below 1.0 and the cancer risk associated with the project is greater than 1.0 in a million, but less than 20 in a million. In accordance with the District’s Risk Management Policy, the project is approved with Toxic Best Available Control Technology (T-BACT).

To ensure that human health risks will not exceed District allowable levels; the permit requirements listed on page 1 of this report must be included for this proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.
IV. Attachments

A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Prioritization score w/ toxic emissions summary
D. Facility Summary
Hi Esther - why don't you find a couple of dates in the next two weeks (the sooner the better) when all of the City folks can commit to attending. I will make one of them work. Wednesdays are generally not good for me during the second and third weeks of the month. We are running out of time to finalize the GSA arrangements between the City, Cal Water and the County - and need to get things moving in a positive and collaborative fashion.

Thanks for your help!

George

On Tue, Nov 29, 2016 at 3:03 PM, Esther Gilliland <Esther.Gilliland@stocktonca.gov> wrote:

Mr. Hartmann,

John has asked me to move this meeting to another day. Deputy City Manager Scott Carney and another City Staff member is not available for that meeting that day. Please provide me with some additional dates and times when you will be available over the next two weeks. I will be rescheduling and moving that appointment.

Thank you.

Esther Gilliland

Stockton City Attorney’s Office

Executive Assistant to:

John M. Luebberke, City Attorney, and

Susana Alcala Wood, Assistant City Attorney

209-937-8917

Esther.Gilliland@stocktonca.gov
Confidentiality Notice: This e-mail transmission and any accompanying document(s), may contain confidential information which is legally privileged under the attorney-client or attorney work product privileges. Forwarding or sending attorney-client emails or attachments whether directly or in an email string to persons other than the attorney and client engaged in an attorney-client relationship may limit or destroy the attorney-client privilege. The information contained herein or any attachment hereto is intended only for the use by the individual(s) or entities named as the addressee(s) above. If you are not the intended recipient, or the person responsible for delivering it to the intended recipient, you are hereby notified that any disclosure, copying, distribution, or use of any of the information contained in this transmission is strictly PROHIBITED. Any such inadvertent disclosure of information, which includes any metadata in emails or attachments, shall not compromise or waive the attorney-client privilege as to this communication or otherwise. If you have received this transmission in error, please notify me by telephone at (209)-956-9940 or reply e-mail and delete this message and any attachments. Thank you.

George V. Hartmann, Esq.
THE HARTMANN LAW FIRM
3425 Brookside Road, Suite A
Stockton, CA 95219

209.956.9940 O
209.956.9929 F

Discourage litigation. Persuade your neighbors to compromise whenever you can. As a peacemaker the lawyer has superior opportunity of being a good man. There will still be business enough.

Abraham Lincoln
16th president of US (1809 - 1865)
Hi Esther - Monday or Tuesday afternoons would be great - Thursday from 9-4 is also OK at the moment.

George

On Tue, Nov 22, 2016 at 4:49 PM, Esther Gilliland <Esther.Gilliland@stocktonca.gov> wrote:

Mr. Hartmann,

City Attorney John Luebberke would like to schedule a meeting next week with you and some other City Staff. Please provide me with some available dates for next week. He would like to schedule an hour meeting here in our conference room at City Hall.

Thank you,

Esther Gilliland

Stockton City Attorney’s Office

Executive Assistant to:

John M. Luebberke, City Attorney, and

Susana Alcala Wood, Assistant City Attorney

209-937-8917

Esther.Gilliland@stocktonca.gov
Confidentiality Notice: This e-mail transmission and any accompanying document(s), may contain confidential information which is legally privileged under the attorney-client or attorney work product privileges. Forwarding or sending attorney-client emails or attachments whether directly or in an email string to persons other than the attorney and client engaged in an attorney-client relationship may limit or destroy the attorney-client privilege. The information contained herein or any attachment hereto is intended only for the use by the individual(s) or entities named as the addressee(s) above. If you are not the intended recipient, or the person responsible for delivering it to the intended recipient, you are hereby notified that any disclosure, copying, distribution, or use of any of the information contained in this transmission is strictly PROHIBITED. Any such inadvertent disclosure of information, which includes any metadata in emails or attachments, shall not compromise or waive the attorney-client privilege as to this communication or otherwise. If you have received this transmission in error, please notify me by telephone at (209)-956-9940 or reply e-mail and delete this message and any attachments. Thank you.

George V. Hartmann, Esq.
THE HARTMANN LAW FIRM
3425 Brookside Road, Suite A
Stockton, CA 95219

209.956.9940 O
209.956.9929 F

Discourage litigation. Persuade your neighbors to compromise whenever you can. As a peacemaker the lawyer has superior opportunity of being a good man. There will still be business enough.

Abraham Lincoln
16th president of US (1809 - 1865)
Unfortunately, I am behind on this issue. I’ll read the memo and provide my thoughts.

I am out of the office tomorrow, but could join a call.

Bob

Thoughts? We have not discussed this in detail, so I'd like to schedule a time to do so.

Get Outlook for iOS

---------- Forwarded message ----------
From: "George V. Hartmann" <gvhlaw@gmail.com>
Date: Mon, Nov 21, 2016 at 12:14 PM -0800
Subject: Fwd: CONFERENCE CALL - SGMA ATTORNEY GROUP CHECK-IN
To: "John Luebberke" <John.Luebberke@stocktonca.gov>

Dear John:

Attached is a memo that Greg Milleman told me he sent to you - but he has not received a reply.

As we discussed by telephone, I would like to meet with you and the City Manager at your earliest convenient opportunity. Wednesday is the best day for me this week.

The County and Cal Water met last week with a very positive outcome. As far as I can tell, working-out the City's SGMA intentions both with respect to GSA status and entering into a possible relationship with Cal Water per the concepts set forth in the attached memorandum is our last piece of the puzzle.

One way or the other, Cal Water will be participating in the JPA we are forming to complete the GSP by January 2020. We think that the optimal and least cost strategy is for the City, County and Cal Water to combine in a three-way GSA covering the relevant portions of the City and areas outside the City that are served by Cal Water.

There are at least two other options that I will share with you when we meet to discuss moving forward.
Time is now a problem, and the City / Cal Water / County relationship has to be resolved shortly in order to permit meeting the June 30, 2017 GSA formation deadline. We simply have to engage with the City and reach closure as to the City's course of action.

Best Regards,

George

--

Confidentiality Notice: This e-mail transmission and any accompanying document(s), may contain confidential information which is legally privileged under the attorney-client or attorney work product privileges. Forwarding or sending attorney-client emails or attachments whether directly or in an email string to persons other than the attorney and client engaged in an attorney-client relationship may limit or destroy the attorney-client privilege. The information contained herein or any attachment hereto is intended only for the use by the individual(s) or entities named as the addressee(s) above. If you are not the intended recipient, or the person responsible for delivering it to the intended recipient, you are hereby notified that any disclosure, copying, distribution, or use of any of the information contained in this transmission is strictly PROHIBITED. Any such inadvertent disclosure of information, which includes any metadata in emails or attachments, shall not compromise or waive the attorney-client privilege as to this communication or otherwise. If you have received this transmission in error, please notify me by telephone at (209)-956-9940 or reply e-mail and delete this message and any attachments. Thank you.

George V. Hartmann, Esq.
THE HARTMANN LAW FIRM
3425 Brookside Road, Suite A
Stockton, CA 95219

209.956.9940 O
209.956.9929 F

Discourage litigation. Persuade your neighbors to compromise whenever you can. As a peacemaker the lawyer has superior opportunity of being a good man. There will still be business enough.

Abraham Lincoln
16th president of US (1809 - 1865)
Yes. Thanks

John, will anyone from our office be included in this meeting? The two days available for Herum Crabtree are Friday, 8/5 and Monday 8/8. Both of which you are out. 8/5 is a Friday closed day and 8/8 you are scheduled out on vacation. You are available the other day twos, 8/9 and 8/11. Should I just provide those two dates back to Downey Brand and let them schedule something accordingly?

Esther

Please help schedule. Thanks

John M. Luebberke
City Attorney
City of Stockton
425 N El Dorado St.
Stockton, CA 95202

(209) 937-8333

john.luebberke@stocktonca.gov

The Information contained in this e-mail is intended only for the CONFIDENTIAL use of the designated addressee named above. The information is subject to the attorney-client privilege and/or represents confidential attorney work product. Recipients should not file copies of this e-mail with publicly accessible written or electronic records. If you are not the designated addressee and you received this document in error, any further review, dissemination, distribution, or copying of this communication, and any attachments, by you, or anyone else is strictly prohibited.

IF YOU RECEIVED THIS COMMUNICATION IN ERROR, PLEASE NOTIFY US
IMMEDIATELY BY TELEPHONE AT THE NUMBER SHOWN ABOVE.
Thank You.

-------- Forwarded message --------
From: "Jeanne Zolezzi" <jzolezzi@herumcrabtree.com>
Date: Wed, Jul 27, 2016 at 2:03 PM -0700
Subject: RE: Possible dates for meeting RE: JPA E. San Joaquin Subbasin
To: "Cougar, Bridget" <bcougar@DowneyBrand.com>, "O'Hanlon, Daniel" <dohanlon@kmtg.com>, "Karna Harrigfeld" <KHARRIGFELD@herumcrabtree.com>, "jennifer@spalettalaw.com" <jennifer@spalettalaw.com>, "ngmplcs@pacbell.net" <ngmplcs@pacbell.net>, "jherrlaw@aol.com" <jherrlaw@aol.com>, "vkincaid@olaughlinparis.com" <vkincaid@olaughlinparis.com>, "John Luebberke" <John.Luebberke@stocktonca.gov>, "reidwroberts@gmail.com" <reidwroberts@gmail.com>, "mbrown@miabrownlaw.com" <mbrown@miabrownlaw.com>, "BozeT@stancounty.com" <BozeT@stancounty.com>, "George V. Hartmann (gvhlaw@gmail.com)" <gvhlaw@gmail.com>, "jmagdich@lodi.gov" <jmagdich@lodi.gov>, "Russell@spalettalaw.com" <Russell@spalettalaw.com>, "Walter, Hanspeter" <hwalter@kmtg.com>, "kbalaji@sjgov.org" <kbalaji@sjgov.org>, "bnakagawa@sjgov.org" <bnakagawa@sjgov.org>, "fbuchman@sjgov.org" <fbuchman@sjgov.org>, "Myles, James" <jmyles@sjgov.org>
Cc: "Nikkel, Meredith" <mnikkel@DowneyBrand.com>, "O'Brien, Kevin" <kobrien@DowneyBrand.com>

I am available 8/5 and 8/8. I am out of town on 8/9 and 8/11.

From: Cougar, Bridget [mailto:bcougar@DowneyBrand.com]
Sent: Wednesday, July 27, 2016 1:26 PM
To: 'O'Hanlon, Daniel'; Jeanne Zolezzi; Karna Harrigfeld; 'jennifer@spalettalaw.com'; 'ngmplcs@pacbell.net'; 'jherrlaw@aol.com'; 'vkincaid@olaughlinparis.com'; 'John.Luebberke@stocktonca.gov'; 'reidwroberts@gmail.com'; 'mbrown@miabrownlaw.com'; 'BozeT@stancounty.com'; 'George V. Hartmann (gvhlaw@gmail.com)'; 'jmagdich@lodi.gov'; 'Russell@spalettalaw.com'; 'Walter, Hanspeter'; 'kbalaji@sjgov.org'; 'bnakagawa@sjgov.org'; 'fbuchman@sjgov.org'; 'Myles, James'
Cc: Nikkel, Meredith; O'Brien, Kevin
Subject: Possible dates for meeting RE: JPA E. San Joaquin Subbasin

Possible dates for next meeting in Stockton:

Friday 8/5, 8:00-10:00, 1:00-5:00
Monday 8/8, 9:00-12:00
Tuesday 8/9, 1:00-5:00
Thurs. 8/11, 1:00-5:00

Please let me know all your matching availability for a 2-hour meeting.

Thank you,

Bridget Cougar
Legal Secretary to Scott L. Shapiro,
Kevin M. O'Brien and Dan L. Carroll

Downey Brand LLP
621 Capitol Mall, 18th Floor
Sacramento, CA 95814
916.444.1000 Main
From: O’Brien, Kevin
Sent: Wednesday, July 27, 2016 12:48 PM
To: 'O’Hanlon, Daniel'; 'jzolezzi@herumcrabtree.com'; "Karna Harrigfeld '; 'jennifer@spalettalaw.com'; 'ngmplcs@pacbell.net'; 'jherrlaw@aol.com'; 'vkincaid@olaughlinparis.com'; 'John.Luebberke@stocktonca.gov'; 'reidwroberts@gmail.com'; 'mbrown@miabrownlaw.com'; 'BozeT@stancounty.com'; 'George V. Hartmann (gvhlaw@gmail.com)'; 'jmagdich@lodi.gov'; 'Russell@spalettalaw.com'; Walter, Hanspeter
Cc: 'kbalaji@sjgov.org'; 'bnakagawa@sjgov.org'; 'fbuchman@sjgov.org'; 'Myles, James'; Nikkel, Meredith; Cougar, Bridget
Subject: Joint Powers Agreement Eastern San Joaquin Subbasin

All,

Unfortunately we need to cancel the meeting we had scheduled for this Friday July 29 at 10:00 AM. The State Water Board hearing on the “California WaterFix” project, in which several of us are involved, begins testimony from the DWR and USBR witnesses on Friday morning. I will rescind the calendar invite for the Friday meeting and will ask my assistant to re-schedule the meeting to a date in early August with no WaterFix hearing scheduled.

Thanks to Dan O’Hanlon for sending a new version of the Agreement and his comments. If others have suggested changes please send them to me by the end of this week and I will prepare a new, consolidated version that includes all suggested changes. I anticipate that there will be a few issues for the attorney group to resolve.

As Dan points out, we discussed at our last meeting preparing a written narrative to accompany the draft agreement, for use with the boards of potential member agencies to explain the policy level choices that they need to make, how we expect this agreement would work, and how we expect this arrangement might further unfold. I am planning to prepare the written narrative and will send it out with the next version of the Agreement, early next week.

Kevin

Kevin M. O’Brien

CONFIDENTIALITY NOTICE: This communication and any accompanying document(s) are confidential and privileged. They are intended for
the sole use of the addressee. If you receive this transmission in error, you are advised that any disclosure, copying, distribution, or the taking of any action in reliance upon the communication is strictly prohibited. Moreover, any such inadvertent disclosure shall not compromise or waive the attorney-client privilege as to this communication or otherwise. **If you have received this communication in error,** please contact our IS Department at its Internet email address (is@downeybrand.com), or by telephone at (916)444-1000 x5325. Thank you.
Please set this up. Thanks

Good Morning All,

As some of you know, I was recently retained by the County of San Joaquin to serve as special counsel for SGMA implementation matters. At the last meeting of the Eastern San Joaquin SGMA Work Group held on May 11, 2016 we discussed the establishment of an attorneys committee to prepare an initial draft of a Joint Powers Agreement (JPA) governing SGMA implementation in Eastern San Joaquin County.

The attorneys committee will not make policy decisions; its charge is to provide an initial legal framework for use by the policy group. I envision that the draft JPA will identify key policy issues and describe options for addressing those issues.

The purpose of this e-mail is to schedule the initial meeting of the attorneys committee. Please respond to my assistant, Bridget Cougar at bcougar@downeybrand.com regarding your availability on the following dates/times in June:

9th: 9:30-11:30 AM
10th: 2:00-4:00 PM
15th: 10:00 AM-Noon or 1:30-3:30 PM
17th: 9:30-11:30 AM
20th: 9:30-11:30 AM or 1:30-3:30 PM
21st: 9:30-11:30 AM

I propose that we meet at Downey Brand’s Stockton office (3425 Brookside Road, Suite A). Once the meeting is set my assistant will send out a calendar invitation. If I have missed any attorneys that represent clients involved in SGMA implementation in Eastern San Joaquin County please let me know and I will add them to the invite list.

I look forward to working with you on this matter.
Thanks,
Kevin

Kevin M. O'Brien

DOWNEY BRAN D

Downey Brand LLP
621 Capitol Mall, 18th Floor
Sacramento, CA 95814
916.444.1000 Main
916.520.5235 Direct
916.520.5635 Fax
kobrien@downeybrand.com
www.downeybrand.com

CONFIDENTIALITY NOTICE: This communication and any accompanying
document(s) are confidential and privileged. They are intended for
the sole use of the addressee. If you receive this transmission in
error, you are advised that any disclosure, copying, distribution, or
the taking of any action in reliance upon the communication is
strictly prohibited. Moreover, any such inadvertent disclosure shall
not compromise or waive the attorney-client privilege as to this
communication or otherwise. If you have received this communication
in error, please contact our IS Department at its Internet email address
(is@downeybrand.com), or by telephone at (916)444-1000 x5325. Thank
you.
Attached is the final agenda packet for the upcoming 3/24 Planning Commission meeting.

The agenda can also be viewed online at: www.stocktonca.gov/bconlinemeetings.

JOBI L. SPANO
CDD Technician
Community Development Dept.
P:209.937.8564
F:209.937.8893

Permit Center Hours of Operation